23 January 2024, 12:00

Три металла и новая технология упростят получение ненасыщенных спиртов

При производстве косметики и парфюмерии в качестве компонентов ароматической смеси используют ненасыщенные спирты, то есть спирты, в которых, помимо спиртовой группы, также присутствует двойная связь между атомами углерода. Такие спирты обычно получают из выделяемых из растений ненасыщенных альдегидов. Наиболее доступный, дешевый и экологически безопасный способ превратить альдегиды в спирты — использовать водород на твердом катализаторе. В этом случае водород должен присоединяться в определенном месте молекулы (к карбонильной группе), тем самым восстанавливая ее. Твердый катализатор ускоряет этот процесс и после реакции легко удаляется из жидкой реакционной смеси. Однако существующие коммерческие катализаторы не позволяют избирательно проводить восстановление именно карбонильной группы и не затрагивать двойную связь ненасыщенного альдегида. Кроме того, для протекания процесса зачастую требуются достаточно жесткие условия, такие как нагрев выше 60оС и давление, в десять раз превышающее атмосферное. Поэтому исследователи пытаются разработать катализаторы, которые смогут «заставить» водород присоединяться только к нужному участку ненасыщенных альдегидов.

Три металла и новая технология упростят получение ненасыщенных спиртов
Катализатор до и после напуска водорода
Source: Елена Редина

Ученые из Института органической химии имени Н. Д. Зелинского РАН (Москва) синтезировали катализаторы на основе наночастиц платины и оксидов церия, а также циркония. Эти элементы авторы выбрали потому, что в более ранних исследованиях выяснили: их комбинации позволяют добиться восстановления альдегидов уже при комнатной температуре и атмосферном давлении. Платину наносили в виде наночастиц почти субнанометрового размера (в десятки раз меньше самых мелких вирусов) на подложку, представляющую собой смешанные оксиды церия и циркония. При этом платина распределялась по носителю в виде отдельных атомов или собиралась в небольшие кластеры.

Затем химики проверили, насколько эффективно реакция шла по нужному пути при участии катализаторов. Эксперименты показали, что разработанный катализатор позволяет получить в 7–12 раз больше коричного спирта из коричного альдегида, нежели при участии коммерческих катализаторов на основе платины или палладия, нанесенных на углерод или оксид кремния. Авторы обнаружили, что в случае новых материалов на платине появлялись активные частицы водорода уже при отрицательных температурах, которые переносились на оксид церия в составе носителя. В результате на поверхности катализатора формировалось большое количество участков — активных центров, — связывающих именно тот фрагмент альдегидов, к которому нужно было присоединить водород.

Также авторы показали, что катализаторы на основе платины, оксидов церия и циркония эффективно «направляли» реакции, протекающие с участием других ненасыщенных альдегидов, тоже использующихся в парфюмерии и фармацевтике. Так, эффективность превращения достигала 95–99%, а избирательность — 55–100% при комнатной температуре и атмосферном давлении. Кроме того, новые катализаторы оказались многоразовыми: их можно было использовать больше четырех раз. Это уменьшит их расход, удешевит конечный продукт и снизит количество отходов.

«В дальнейшем мы бы хотели расширить эти исследования, изучив и другие катализаторы с подложками различного состава, что позволит прогнозировать каталитические свойства систем и создавать катализаторы “направленного” действия. В наших проектах мы стараемся совмещать и фундаментальную науку, и практическое применение катализаторов в органическом синтезе», — рассказывает руководитель проекта, поддержанного грантом РНФ, Елена Редина, кандидат химических наук, старший научный сотрудник Института органической химии имени Н. Д. Зелинского РАН.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в Journal of Catalysis.

Source:  Пресс-служба РНФ

News article publications

Read also

Катализаторы из винной кислоты повысят оптическую чистоту органических молекул
Ученые создали металлокомплексные катализаторы на основе палладия и органических молекул, содержащих атомы серы и фосфора. Использование этих катализаторов позволяет получать соединения с оптической чистотой до 99%. Оптическая чистота важна при производстве лекарств, витаминов и пестицидов, поскольку она влияет на их биологическую активность.
Catalysis
Organic Chemistry
Synthesis
25 January 2024
Новый фотокатализатор разрушил загрязнителей сточных вод с помощью ультрафиолета
Ученые синтезировали уникальный материал — гибридный фотокатализатор, состоящий из органического и неорганического нанокомпонентов. Под действием видимого и ультрафиолетового света он генерирует свободные радикалы, которые с эффективностью более 90% разрушают органические загрязнители, попадающие в сточные воды от химических производств. Кроме того, новый фотокатализатор в 11 раз быстрее аналогов подавляет рост бактерий Escherichia coli (кишечной палочки) — микроорганизма, активно размножающегося в сточных водах. Полученный материал потенциально может использоваться при очистке сточных вод от токсинов, красителей и других соединений, использующихся в химической промышленности, а также при их обеззараживании от микроорганизмов.
"Green" chemistry
Catalysis
Synthesis
18 November 2023
Настройка условий всего одной реакции позволила получить новые антибиотики
При помощи золота химики получили известные оксазиноны, а с помощью синего света — их ранее неизвестных родственников, также обладающих антибактериальной активностью
Catalysis
Organic Chemistry
Pharmacy
Synthesis
18 May 2023
Органика повысила стабильность катализаторов для водородной энергетики
Они оказались способны ускорять реакцию разложения воды как минимум в течение 1000 циклов при непрерывной работе и были устойчивы даже при температурах 150-200°С.
Alternative energy
Catalysis
Materials Science
New techniques
Synthesis
3 February 2023
Новый электрокатализатор превратит угарный газ в этанол
Коллектив китайских и российских ученых разработал простой способ получения стабильного электрокатализатора, способного эффективно (выход — до 93,5%) превращать угарный газ в углеродные продукты, в том числе этанол
Alternative energy
Catalysis
Synthesis
2 February 2023
Модификация позволила улучшить катализатор для получения этилена и пропилена
Его можно настроить так, чтобы менять соотношение продуктов в зависимости от потребности в одном из них
Catalysis
Polymer Chemistry
Synthesis
15 November 2022