Open Access
Open access
Geoscience Frontiers, volume 10, issue 4, pages 1223-1254

Subduction zone geochemistry

Publication typeJournal Article
Publication date2019-07-01
scimago Q1
SJR1.734
CiteScore17.8
Impact factor8.5
ISSN16749871
General Earth and Planetary Sciences
Abstract
Abstract Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity. However, crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases. The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels. Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources, the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle. In this process, the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases. For this reason, geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram. One is island arc basalts (IAB), showing enrichment in LILE, Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE. The other is ocean island basalts (OIB), exhibiting enrichment in LILE and LREE, enrichment or non-depletion in HFSE but depletion in Pb relative to HREE. In either types, these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts (MORB). The thermal regime of subduction zones can be categorized into two stages in both time and space. The first stage is characterized by compressional tectonism at low thermal gradients. As a consequence, metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile, resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE, Pb and LREE but depleted in HFSE and HREE relative to normal MORB. This provides the crustal signature for the mantle sources of IAB. The second stage is indicated by extensional tectonism at high thermal gradients, leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths. This involves not only the breakdown of hydrous minerals such as amphibole, phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts. As such, the hydrous melts can acquire the trace element composition that is significantly enriched in LILE, HFSE and LREE but depleted in Pb and HREE relative to normal MORB, providing the crustal signature for the mantle sources of OIB. In either case, these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths, generating ultramafic metasomatites such as serpentinized and chloritized peridotites, and olivine-poor pyroxenites and hornblendites. As a consequence, the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
10
20
30
40
50
60

Publishers

20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?