Open Access
Open access
том 123 страницы 347-353

Grid path planning with deep reinforcement learning: Preliminary results

Тип публикацииJournal Article
Дата публикации2018-02-03
SJR0.471
CiteScore4.1
Impact factor
ISSN18770509
General Engineering
Краткое описание
Abstract Single-shot grid-based path finding is an important problem with the applications in robotics, video games etc. Typically in AI community heuristic search methods (based on A* and its variations) are used to solve it. In this work we present the results of preliminary studies on how neural networks can be utilized to path planning on square grids, e.g. how well they can cope with path finding tasks by themselves within the well-known reinforcement problem statement. Conducted experiments show that the agent using neural Q-learning algorithm robustly learns to achieve the goal on small maps and demonstrate promising results on the maps have ben never seen by him before.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Sensors
11 публикаций, 8.4%
IEEE Access
10 публикаций, 7.63%
Lecture Notes in Computer Science
6 публикаций, 4.58%
Drones
4 публикации, 3.05%
Applied Sciences (Switzerland)
3 публикации, 2.29%
IEEE Robotics and Automation Letters
3 публикации, 2.29%
ISPRS International Journal of Geo-Information
2 публикации, 1.53%
IEEE Transactions on Neural Networks and Learning Systems
2 публикации, 1.53%
Expert Systems with Applications
2 публикации, 1.53%
IEEE Transactions on Intelligent Vehicles
2 публикации, 1.53%
Knowledge-Based Systems
2 публикации, 1.53%
Lecture Notes in Electrical Engineering
2 публикации, 1.53%
Computers and Electronics in Agriculture
2 публикации, 1.53%
PeerJ Computer Science
1 публикация, 0.76%
Journal of Circuits, Systems and Computers
1 публикация, 0.76%
International Journal of Advanced Robotic Systems
1 публикация, 0.76%
Electronics (Switzerland)
1 публикация, 0.76%
Machines
1 публикация, 0.76%
Frontiers in Neurorobotics
1 публикация, 0.76%
Journal of Intelligent Manufacturing
1 публикация, 0.76%
Intelligent Service Robotics
1 публикация, 0.76%
Autonomous Robots
1 публикация, 0.76%
Journal of Manufacturing Processes
1 публикация, 0.76%
Journal of Physics: Conference Series
1 публикация, 0.76%
Automation in Construction
1 публикация, 0.76%
Optimal Control Applications and Methods
1 публикация, 0.76%
Offshore Robotics
1 публикация, 0.76%
Journal of Computer and Communications
1 публикация, 0.76%
Sakarya University Journal of Science
1 публикация, 0.76%
2
4
6
8
10
12

Издатели

10
20
30
40
50
60
Institute of Electrical and Electronics Engineers (IEEE)
54 публикации, 41.22%
MDPI
23 публикации, 17.56%
Springer Nature
20 публикаций, 15.27%
Elsevier
15 публикаций, 11.45%
Wiley
3 публикации, 2.29%
Hindawi Limited
2 публикации, 1.53%
PeerJ
1 публикация, 0.76%
World Scientific
1 публикация, 0.76%
SAGE
1 публикация, 0.76%
Frontiers Media S.A.
1 публикация, 0.76%
IOP Publishing
1 публикация, 0.76%
Scientific Research Publishing
1 публикация, 0.76%
Sakarya University Journal of Science
1 публикация, 0.76%
Association for Computing Machinery (ACM)
1 публикация, 0.76%
American Institute of Aeronautics and Astronautics (AIAA)
1 публикация, 0.76%
SPIE-Intl Soc Optical Eng
1 публикация, 0.76%
Taylor & Francis
1 публикация, 0.76%
10
20
30
40
50
60
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
131
Поделиться
Цитировать
ГОСТ |
Цитировать
Panov A. et al. Grid path planning with deep reinforcement learning: Preliminary results // Procedia Computer Science. 2018. Vol. 123. pp. 347-353.
ГОСТ со всеми авторами (до 50) Скопировать
Panov A., Yakovlev K., Suvorov R. Grid path planning with deep reinforcement learning: Preliminary results // Procedia Computer Science. 2018. Vol. 123. pp. 347-353.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.procs.2018.01.054
UR - https://doi.org/10.1016/j.procs.2018.01.054
TI - Grid path planning with deep reinforcement learning: Preliminary results
T2 - Procedia Computer Science
AU - Panov, Aleksandr
AU - Yakovlev, Konstantin
AU - Suvorov, Roman
PY - 2018
DA - 2018/02/03
PB - Elsevier
SP - 347-353
VL - 123
SN - 1877-0509
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2018_Panov,
author = {Aleksandr Panov and Konstantin Yakovlev and Roman Suvorov},
title = {Grid path planning with deep reinforcement learning: Preliminary results},
journal = {Procedia Computer Science},
year = {2018},
volume = {123},
publisher = {Elsevier},
month = {feb},
url = {https://doi.org/10.1016/j.procs.2018.01.054},
pages = {347--353},
doi = {10.1016/j.procs.2018.01.054}
}