том 18 издание 2 страницы 1109-1121

Nanohardness from First Principles with Active Learning on Atomic Environments

Тип публикацииJournal Article
Дата публикации2022-01-06
scimago Q1
wos Q1
БС1
SJR1.482
CiteScore9.8
Impact factor5.5
ISSN15499618, 15499626
Physical and Theoretical Chemistry
Computer Science Applications
Краткое описание
We propose a methodology for the calculation of nanohardness by atomistic simulations of nanoindentation. The methodology is enabled by machine-learning interatomic potentials fitted on the fly to quantum-mechanical calculations of local fragments of the large nanoindentation simulation. We test our methodology by calculating nanohardness, as a function of load and crystallographic orientation of the surface, of diamond, AlN, SiC, BC2N, and Si and comparing it to the calibrated values of the macro- and microhardness. The observed agreement between the computational and experimental results from the literature provides evidence that our method has sufficient predictive power to open up the possibility of designing materials with exceptional hardness directly from first principles. It will be especially valuable at the nanoscale where the experimental measurements are difficult, while empirical models fitted to macrohardness are, as a rule, inapplicable.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
npj Computational Materials
3 публикации, 12.5%
Physical Review Materials
2 публикации, 8.33%
Materials Horizons
1 публикация, 4.17%
European Physical Journal Plus
1 публикация, 4.17%
Journal of Chemical Physics
1 публикация, 4.17%
Science and Technology of Advanced Materials Methods
1 публикация, 4.17%
Advanced Materials
1 публикация, 4.17%
Computational Materials Science
1 публикация, 4.17%
Machine Learning and Deep Learning in Computational Toxicology
1 публикация, 4.17%
Advanced Theory and Simulations
1 публикация, 4.17%
Physical Review B
1 публикация, 4.17%
Journal of the American Ceramic Society
1 публикация, 4.17%
Journal of Computational Science
1 публикация, 4.17%
Faraday Discussions
1 публикация, 4.17%
Science
1 публикация, 4.17%
Advanced Energy Materials
1 публикация, 4.17%
Materials Today Communications
1 публикация, 4.17%
Modelling and Simulation in Materials Science and Engineering
1 публикация, 4.17%
Materials and Design
1 публикация, 4.17%
Digital Discovery
1 публикация, 4.17%
Computer Physics Communications
1 публикация, 4.17%
1
2
3

Издатели

1
2
3
4
5
Springer Nature
5 публикаций, 20.83%
Elsevier
5 публикаций, 20.83%
Wiley
4 публикации, 16.67%
Royal Society of Chemistry (RSC)
3 публикации, 12.5%
American Physical Society (APS)
3 публикации, 12.5%
AIP Publishing
1 публикация, 4.17%
Taylor & Francis
1 публикация, 4.17%
American Association for the Advancement of Science (AAAS)
1 публикация, 4.17%
IOP Publishing
1 публикация, 4.17%
1
2
3
4
5
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
24
Поделиться
Цитировать
ГОСТ |
Цитировать
Podryabinkin E. V. et al. Nanohardness from First Principles with Active Learning on Atomic Environments // Journal of Chemical Theory and Computation. 2022. Vol. 18. No. 2. pp. 1109-1121.
ГОСТ со всеми авторами (до 50) Скопировать
Podryabinkin E. V., Kvashnin A. G., Asgarpour M., Maslenikov I. I., Ovsyannikov D. A., Sorokin P. B., Popov M. Yu., Shapeev A. V. Nanohardness from First Principles with Active Learning on Atomic Environments // Journal of Chemical Theory and Computation. 2022. Vol. 18. No. 2. pp. 1109-1121.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.jctc.1c00783
UR - https://doi.org/10.1021/acs.jctc.1c00783
TI - Nanohardness from First Principles with Active Learning on Atomic Environments
T2 - Journal of Chemical Theory and Computation
AU - Podryabinkin, Evgeny V.
AU - Kvashnin, Alexander G.
AU - Asgarpour, Milad
AU - Maslenikov, Igor I.
AU - Ovsyannikov, Danila A
AU - Sorokin, Pavel B.
AU - Popov, Mikhail Yu
AU - Shapeev, Alexander V
PY - 2022
DA - 2022/01/06
PB - American Chemical Society (ACS)
SP - 1109-1121
IS - 2
VL - 18
PMID - 34990122
SN - 1549-9618
SN - 1549-9626
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Podryabinkin,
author = {Evgeny V. Podryabinkin and Alexander G. Kvashnin and Milad Asgarpour and Igor I. Maslenikov and Danila A Ovsyannikov and Pavel B. Sorokin and Mikhail Yu Popov and Alexander V Shapeev},
title = {Nanohardness from First Principles with Active Learning on Atomic Environments},
journal = {Journal of Chemical Theory and Computation},
year = {2022},
volume = {18},
publisher = {American Chemical Society (ACS)},
month = {jan},
url = {https://doi.org/10.1021/acs.jctc.1c00783},
number = {2},
pages = {1109--1121},
doi = {10.1021/acs.jctc.1c00783}
}
MLA
Цитировать
Podryabinkin, Evgeny V., et al. “Nanohardness from First Principles with Active Learning on Atomic Environments.” Journal of Chemical Theory and Computation, vol. 18, no. 2, Jan. 2022, pp. 1109-1121. https://doi.org/10.1021/acs.jctc.1c00783.