Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning
Тип публикации: Journal Article
Дата публикации: 2022-08-08
scimago Q1
wos Q1
БС1
SJR: 5.554
CiteScore: 22.5
Impact factor: 15.6
ISSN: 00027863, 15205126
PubMed ID:
35939718
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Краткое описание
Mass spectrometry (MS) is a convenient, highly sensitive, and reliable method for the analysis of complex mixtures, which is vital for materials science, life sciences fields such as metabolomics and proteomics, and mechanistic research in chemistry. Although it is one of the most powerful methods for individual compound detection, complete signal assignment in complex mixtures is still a great challenge. The unconstrained formula-generating algorithm, covering the entire spectra and revealing components, is a "dream tool" for researchers. We present the framework for efficient MS data interpretation, describing a novel approach for detailed analysis based on deisotoping performed by gradient-boosted decision trees and a neural network that generates molecular formulas from the fine isotopic structure, approaching the long-standing inverse spectral problem. The methods were successfully tested on three examples: fragment ion analysis in protein sequencing for proteomics, analysis of the natural samples for life sciences, and study of the cross-coupling catalytic system for chemistry.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
|
|
|
Analytical Chemistry
6 публикаций, 8.22%
|
|
|
ACS Catalysis
3 публикации, 4.11%
|
|
|
Nature Communications
3 публикации, 4.11%
|
|
|
Journal of Proteome Research
2 публикации, 2.74%
|
|
|
Journal of the American Chemical Society
2 публикации, 2.74%
|
|
|
Analytical and Bioanalytical Chemistry
2 публикации, 2.74%
|
|
|
Digital Discovery
2 публикации, 2.74%
|
|
|
Food Chemistry
2 публикации, 2.74%
|
|
|
Data
1 публикация, 1.37%
|
|
|
Expert Opinion on Drug Discovery
1 публикация, 1.37%
|
|
|
Atoms
1 публикация, 1.37%
|
|
|
International Journal of Polymer Science
1 публикация, 1.37%
|
|
|
Journal of Experimental Botany
1 публикация, 1.37%
|
|
|
Materials Advances
1 публикация, 1.37%
|
|
|
Doklady Chemistry
1 публикация, 1.37%
|
|
|
Chemical Papers
1 публикация, 1.37%
|
|
|
Water Research
1 публикация, 1.37%
|
|
|
Russian Journal of Organic Chemistry
1 публикация, 1.37%
|
|
|
ACS Measurement Science Au
1 публикация, 1.37%
|
|
|
The Innovation
1 публикация, 1.37%
|
|
|
Intelligent Decision Technologies
1 публикация, 1.37%
|
|
|
Plant Journal
1 публикация, 1.37%
|
|
|
Journal of the American Society for Mass Spectrometry
1 публикация, 1.37%
|
|
|
Journal of Chromatography Open
1 публикация, 1.37%
|
|
|
Artificial Intelligence Chemistry
1 публикация, 1.37%
|
|
|
ACS ES&T Air
1 публикация, 1.37%
|
|
|
Small
1 публикация, 1.37%
|
|
|
International Journal of Molecular Sciences
1 публикация, 1.37%
|
|
|
ACS Nano
1 публикация, 1.37%
|
|
|
1
2
3
4
5
6
|
Издатели
|
5
10
15
20
|
|
|
American Chemical Society (ACS)
20 публикаций, 27.4%
|
|
|
Elsevier
13 публикаций, 17.81%
|
|
|
Springer Nature
9 публикаций, 12.33%
|
|
|
Royal Society of Chemistry (RSC)
6 публикаций, 8.22%
|
|
|
Wiley
6 публикаций, 8.22%
|
|
|
Pleiades Publishing
4 публикации, 5.48%
|
|
|
MDPI
3 публикации, 4.11%
|
|
|
Oxford University Press
2 публикации, 2.74%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 1.37%
|
|
|
Taylor & Francis
1 публикация, 1.37%
|
|
|
Hindawi Limited
1 публикация, 1.37%
|
|
|
SAGE
1 публикация, 1.37%
|
|
|
Akademizdatcenter Nauka
1 публикация, 1.37%
|
|
|
The Russian Academy of Sciences
1 публикация, 1.37%
|
|
|
Pirogov Russian National Research Medical University
1 публикация, 1.37%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 1.37%
|
|
|
Copernicus
1 публикация, 1.37%
|
|
|
Technosphera JSC
1 публикация, 1.37%
|
|
|
5
10
15
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
73
Всего цитирований:
73
Цитирований c 2025:
31
(42.47%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Boiko D. A. et al. Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning // Journal of the American Chemical Society. 2022. Vol. 144. No. 32. pp. 14590-14606.
ГОСТ со всеми авторами (до 50)
Скопировать
Boiko D. A., Kozlov K. S., Burykina J. V., Ilyushenkova V. V., Ananikov V. P. Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning // Journal of the American Chemical Society. 2022. Vol. 144. No. 32. pp. 14590-14606.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1021/jacs.2c03631
UR - https://doi.org/10.1021/jacs.2c03631
TI - Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning
T2 - Journal of the American Chemical Society
AU - Boiko, Daniil A.
AU - Kozlov, Konstantin S
AU - Burykina, Julia V
AU - Ilyushenkova, Valentina V
AU - Ananikov, Valentine P
PY - 2022
DA - 2022/08/08
PB - American Chemical Society (ACS)
SP - 14590-14606
IS - 32
VL - 144
PMID - 35939718
SN - 0002-7863
SN - 1520-5126
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Boiko,
author = {Daniil A. Boiko and Konstantin S Kozlov and Julia V Burykina and Valentina V Ilyushenkova and Valentine P Ananikov},
title = {Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning},
journal = {Journal of the American Chemical Society},
year = {2022},
volume = {144},
publisher = {American Chemical Society (ACS)},
month = {aug},
url = {https://doi.org/10.1021/jacs.2c03631},
number = {32},
pages = {14590--14606},
doi = {10.1021/jacs.2c03631}
}
Цитировать
MLA
Скопировать
Boiko, Daniil A., et al. “Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning.” Journal of the American Chemical Society, vol. 144, no. 32, Aug. 2022, pp. 14590-14606. https://doi.org/10.1021/jacs.2c03631.