том 17 издание 5 страницы 2783-2806

CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?

Тип публикацииJournal Article
Дата публикации2021-04-21
scimago Q1
wos Q1
БС1
SJR1.482
CiteScore9.8
Impact factor5.5
ISSN15499618, 15499626
Physical and Theoretical Chemistry
Computer Science Applications
Краткое описание
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
9
Journal of Physical Chemistry A
9 публикаций, 14.29%
Journal of Chemical Physics
6 публикаций, 9.52%
Physical Chemistry Chemical Physics
6 публикаций, 9.52%
Journal of Computational Chemistry
5 публикаций, 7.94%
ChemPhysChem
4 публикации, 6.35%
Journal of Chemical Theory and Computation
4 публикации, 6.35%
Organic and Biomolecular Chemistry
2 публикации, 3.17%
Wiley Interdisciplinary Reviews: Computational Molecular Science
2 публикации, 3.17%
Journal of Physical Chemistry Letters
2 публикации, 3.17%
RSC Advances
2 публикации, 3.17%
Chemistry - A European Journal
2 публикации, 3.17%
ChemistrySelect
1 публикация, 1.59%
Natural Sciences
1 публикация, 1.59%
Australian Journal of Chemistry
1 публикация, 1.59%
Inorganics
1 публикация, 1.59%
Journal of Molecular Modeling
1 публикация, 1.59%
Silicon
1 публикация, 1.59%
Electronic Structure
1 публикация, 1.59%
Scientific data
1 публикация, 1.59%
ACS Chemical Biology
1 публикация, 1.59%
Journal of Organic Chemistry
1 публикация, 1.59%
Annual Reports in Computational Chemistry
1 публикация, 1.59%
Structural Chemistry
1 публикация, 1.59%
Journal of Physical Chemistry B
1 публикация, 1.59%
Journal of the American Chemical Society
1 публикация, 1.59%
Chemical Reviews
1 публикация, 1.59%
Carbon
1 публикация, 1.59%
Journal of Chemical Information and Modeling
1 публикация, 1.59%
1
2
3
4
5
6
7
8
9

Издатели

5
10
15
20
25
American Chemical Society (ACS)
21 публикация, 33.33%
Wiley
15 публикаций, 23.81%
Royal Society of Chemistry (RSC)
10 публикаций, 15.87%
AIP Publishing
6 публикаций, 9.52%
Springer Nature
4 публикации, 6.35%
Elsevier
3 публикации, 4.76%
CSIRO Publishing
1 публикация, 1.59%
MDPI
1 публикация, 1.59%
IOP Publishing
1 публикация, 1.59%
5
10
15
20
25
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
63
Поделиться
Цитировать
ГОСТ |
Цитировать
Mehta N. et al. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? // Journal of Chemical Theory and Computation. 2021. Vol. 17. No. 5. pp. 2783-2806.
ГОСТ со всеми авторами (до 50) Скопировать
Mehta N., Fellowes T., White J. A., Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? // Journal of Chemical Theory and Computation. 2021. Vol. 17. No. 5. pp. 2783-2806.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.jctc.1c00006
UR - https://doi.org/10.1021/acs.jctc.1c00006
TI - CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?
T2 - Journal of Chemical Theory and Computation
AU - Mehta, Nisha
AU - Fellowes, Thomas
AU - White, Jonathan A.
AU - Goerigk, Lars
PY - 2021
DA - 2021/04/21
PB - American Chemical Society (ACS)
SP - 2783-2806
IS - 5
VL - 17
PMID - 33881869
SN - 1549-9618
SN - 1549-9626
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Mehta,
author = {Nisha Mehta and Thomas Fellowes and Jonathan A. White and Lars Goerigk},
title = {CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?},
journal = {Journal of Chemical Theory and Computation},
year = {2021},
volume = {17},
publisher = {American Chemical Society (ACS)},
month = {apr},
url = {https://doi.org/10.1021/acs.jctc.1c00006},
number = {5},
pages = {2783--2806},
doi = {10.1021/acs.jctc.1c00006}
}
MLA
Цитировать
Mehta, Nisha, et al. “CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?.” Journal of Chemical Theory and Computation, vol. 17, no. 5, Apr. 2021, pp. 2783-2806. https://doi.org/10.1021/acs.jctc.1c00006.