Nanohardness from First Principles with Active Learning on Atomic Environments

Podryabinkin E.V., Kvashnin A.G., Asgarpour M., Maslenikov I.I., Ovsyannikov D.A., Sorokin P.B., Popov M.Y., Shapeev A.V.
Тип документаJournal Article
Дата публикации2022-01-06
Название журналаJournal of Chemical Theory and Computation
ИздательAmerican Chemical Society
КвартильQ1
ISSN15499618, 15499626
  • Physical and Theoretical Chemistry
  • Computer Science Applications
Пристатейные ссылки: 71
The MLIP package: moment tensor potentials with MPI and active learning
Novikov I.S., Gubaev K., Podryabinkin E.V., Shapeev A.V.
Machine Learning Science and Technology 2021 цитирований: 29
In operando active learning of interatomic interaction during large-scale simulations
Hodapp M., Shapeev A.
Machine Learning Science and Technology 2020 цитирований: 5
Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics.
Litman Y., Behler J., Rossi M.
Q1 Faraday Discussions 2020 цитирований: 13
Performance and Cost Assessment of Machine Learning Interatomic Potentials
Zuo Y., Chen C., Li X., Deng Z., Chen Y., Behler J., Csányi G., Shapeev A.V., Thompson A.P., Wood M.A., Ong S.P.
Q2 Journal of Physical Chemistry A 2020 цитирований: 180
Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: Application to S + H2.
Novikov I.S., Shapeev A.V., Suleimanov Y.V.
Q1 Journal of Chemical Physics 2019 цитирований: 7
Open Access
Open access
De novo exploration and self-guided learning of potential-energy surfaces
Bernstein N., Csányi G., Deringer V.L.
Q1 npj Computational Materials 2019 цитирований: 67
Open Access
Open access
A model of hardness and fracture toughness of solids
Mazhnik E., Oganov A.R.
Q2 Journal of Applied Physics 2019 цитирований: 53
Machine-learned multi-system surrogate models for materials prediction
Nyshadham C., Rupp M., Bekker B., Shapeev A.V., Mueller T., Rosenbrock C.W., Csányi G., Wingate D.W., Hart G.L.
Q1 npj Computational Materials 2019 цитирований: 41
Open Access
Open access
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
Podryabinkin E.V., Tikhonov E.V., Shapeev A.V., Oganov A.R.
Q1 Physical Review B 2019 цитирований: 128
Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes
Eswar Prasad K., Ramesh K.T.
Q1 Journal of Alloys and Compounds 2019 цитирований: 20
Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
Gubaev K., Podryabinkin E.V., Hart G.L., Shapeev A.V.
Q1 Computational Materials Science 2019 цитирований: 99
Machine Learning a General-Purpose Interatomic Potential for Silicon
Bartók A.P., Kermode J., Bernstein N., Csányi G.
Q1 Physical Review X 2018 цитирований: 114
Open Access
Open access
A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
Xia K., Gao H., Liu C., Yuan J., Sun J., Wang H., Xing D.
Q1 Science Bulletin 2018 цитирований: 54
Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm
Artrith N., Urban A., Ceder G.
Q1 Journal of Chemical Physics 2018 цитирований: 74
Open Access
Open access
Anisotropy effects in diamond under nanoindentation
Huang C., Peng X., Yang B., Xiang H., Sun S., Chen X., Li Q., Yin D., Fu T.
Q1 Carbon 2018 цитирований: 28
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Podryabinkin E.V. и др. Nanohardness from First Principles with Active Learning on Atomic Environments // Journal of Chemical Theory and Computation. 2022.
RIS |
Цитировать

TY - JOUR

DO - 10.1021/acs.jctc.1c00783

UR - http://dx.doi.org/10.1021/acs.jctc.1c00783

TI - Nanohardness from First Principles with Active Learning on Atomic Environments

T2 - Journal of Chemical Theory and Computation

AU - Podryabinkin, Evgeny V.

AU - Kvashnin, Alexander G.

AU - Asgarpour, Milad

AU - Maslenikov, Igor I.

AU - Ovsyannikov, Danila A.

AU - Sorokin, Pavel B.

AU - Popov, Mikhail Yu

AU - Shapeev, Alexander V.

PY - 2022

DA - 2022/01/06

PB - American Chemical Society (ACS)

SN - 1549-9618

SN - 1549-9626

ER -

BibTex |
Цитировать

@article{Podryabinkin_2022,

doi = {10.1021/acs.jctc.1c00783},

url = {https://doi.org/10.1021%2Facs.jctc.1c00783},

year = 2022,

month = {jan},

publisher = {American Chemical Society ({ACS})},

author = {Evgeny V. Podryabinkin and Alexander G. Kvashnin and Milad Asgarpour and Igor I. Maslenikov and Danila A. Ovsyannikov and Pavel B. Sorokin and Mikhail Yu Popov and Alexander V. Shapeev},

title = {Nanohardness from First Principles with Active Learning on Atomic Environments},

journal = {Journal of Chemical Theory and Computation}

}

MLA
Цитировать
Podryabinkin, Evgeny V. et al. “Nanohardness from First Principles with Active Learning on Atomic Environments.” Journal of Chemical Theory and Computation (2022): n. pag. Crossref. Web.