Towards complete and error-free genome assemblies of all vertebrate species
Arang Rhie
1
,
Shane A Mccarthy
2, 3
,
Olivier Fedrigo
4
,
Joana Damas
5
,
Giulio Formenti
4, 6
,
Sergey Koren
1
,
Marcela Uliano-Silva
7, 8
,
William Chow
3
,
Arkarachai Fungtammasan
9
,
Juwan Kim
10
,
CHUL LEE
10
,
Byung June Ko
11
,
Mark Chaisson
12
,
Gregory L Gedman
6
,
Lindsey J Cantin
6
,
Leanne Haggerty
14
,
Iliana Bista
2, 3
,
Michelle Smith
3
,
Bettina Haase
4
,
Jacquelyn Mountcastle
4
,
Sylke Winkler
15, 16
,
Sadye Paez
4, 6
,
Jason Howard
17
,
Sonja C. Vernes
18, 19, 20
,
Tanya M Lama
21
,
Frank Grützner
22
,
Wesley C. Warren
23
,
Christopher N. Balakrishnan
24
,
David R. Burt
25
,
John George
26
,
Matthew T Biegler
6
,
David Iorns
27
,
Andrew P. Digby
28
,
Daryl Eason
28
,
Bruce Robertson
29
,
Taylor Edwards
30
,
Mark Wilkinson
31
,
George Turner
32
,
Axel Meyer
33
,
Andreas F. Kautt
33, 34
,
Paolo Franchini
33
,
H. W. DETRICH
35
,
Hannes Svardal
36, 37
,
Maximilian Wagner
38
,
Gavin J.P. Naylor
39
,
Martin Pippel
15, 40
,
Milan Malinsky
3, 41
,
Mark Mooney
42
,
Maria Simbirsky
9
,
Brett T Hannigan
9
,
Trevor Pesout
43
,
Marlys Houck
44
,
Ann Misuraca
44
,
David M. Rank
45
,
Richard Hall
45
,
Zev Kronenberg
45
,
Ivan Sović
45, 46
,
Christopher Dunn
45
,
Zemin Ning
3
,
Alex Hastie
47
,
Joyce Lee
47
,
Siddarth Selvaraj
48
,
Richard E. Green
43, 49
,
NICHOLAS PUTNAM
50
,
Ivo Glynne Gut
51, 52
,
Jay Ghurye
49, 53
,
Erik Garrison
43
,
Ying Sims
3
,
Joanna Collins
3
,
Sarah Pelan
3
,
James Torrance
3
,
Alan Tracey
3
,
Jonathan Wood
3
,
Robel E Dagnew
12
,
Dengfeng Guan
2, 54
,
Sarah E. London
55
,
D. F. Clayton
56
,
Claudio V. Mello
57
,
Samantha Friedrich
57
,
Peter V Lovell
57
,
Ekaterina Osipova
15, 40, 58
,
Farooq O Al Ajli
59, 60, 61
,
Simona Secomandi
62
,
Heebal Kim
10, 11, 63
,
Constantina Theofanopoulou
6
,
Michael Hiller
64, 65, 66
,
Yang Zhou
67
,
ROBERT S. HARRIS
68
,
Kateryna D. Makova
68, 69, 70
,
Paul Medvedev
69, 70, 71, 72
,
Jinna Hoffman
13
,
Patrick Masterson
13
,
Karen Clark
13
,
Fergal J Martin
14
,
Kevin Howe
14
,
Paul Flicek
14
,
Brian P. Walenz
1
,
Woori Kwak
63, 73
,
Hiram Clawson
43
,
Mark Diekhans
43
,
Luis Nassar
43
,
Benedict Paten
43
,
Robert H S Kraus
33, 74
,
Andrew Crawford
75
,
M. Gilbert
76, 77
,
Guojie Zhang
78, 79, 80, 81
,
B. Venkatesh
82
,
Robert W. Murphy
83
,
Klaus-Peter Koepfli
84
,
Beth Shapiro
85, 86
,
Warren D. Johnson
84, 87, 88
,
Federica Di Palma
89
,
Tomàs Marquès-Bonet
90, 91, 92, 93
,
Emma C. Teeling
94
,
Tandy Warnow
95
,
Jennifer Marshall Graves
96
,
Oliver A. Ryder
44, 97
,
David Haussler
43, 85
,
Stephen J. O'Brien
98, 99
,
Jonas Korlach
45
,
HARRIS A. LEWIN
5, 100, 101
,
Kerstin Howe
3
,
E. W. Myers
15, 40, 102
,
Richard L. Durbin
2, 3
,
Adam M. Phillippy
1
,
Erich D. Jarvis
4, 6, 86
8
Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
|
9
DNAnexus Inc., Mountain View, USA
|
10
13
16
DRESDEN-concept Genome Center, Dresden, Germany
|
17
Novogene, Durham, USA
|
19
Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
|
22
27
The Genetic Rescue Foundation, Wellington, New Zealand
|
28
Kākāpō Recovery, Department of Conservation, Invercargill, New Zealand
|
31
Department of life sciences, Natural History Museum, London, UK
|
40
Center for Systems Biology, Dresden, Germany
|
42
Tag.bio, San Francisco, USA
|
44
San Diego Zoo Global, Escondido, USA
|
45
Pacific Biosciences, Menlo Park, USA
|
46
Digital BioLogic, Ivanić-Grad, Croatia
|
47
BioNano Genomics, San Diego, USA
|
48
Arima Genomics, San Diego, USA
|
49
Dovetail Genomics, Santa Cruz, USA
|
50
Independent Researcher, Santa Cruz, USA
|
51
59
61
Qatar Falcon Genome Project, Doha, Qatar
|
63
eGnome, Inc., Seoul, Republic of Korea
|
64
LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
|
65
Senckenberg Research Institute, Frankfurt, Germany
|
67
BGI-shenzhen, Shenzhen, China
|
71
73
Hoonygen, Seoul, Korea
|
78
China National GeneBank, BGI-Shenzhen, Shenzhen, China
|
81
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
|
83
Centre for Biodiversity, Royal Ontario Museum, Toronto, Canada
|
84
Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, Washington, USA
|
85
88
Walter Reed Army Institute of Research, Silver Spring, USA
|
90
92
93
97
Publication type: Journal Article
Publication date: 2021-04-28
scimago Q1
wos Q1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
33911273
Multidisciplinary
Abstract
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. The Vertebrate Genome Project has used an optimized pipeline to generate high-quality genome assemblies for sixteen species (representing all major vertebrate classes), which have led to new biological insights.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
200
400
600
800
1000
1200
1400
|
|
|
Wellcome Open Research
1347 publications, 56.84%
|
|
|
Journal of Heredity
70 publications, 2.95%
|
|
|
Genome Biology and Evolution
28 publications, 1.18%
|
|
|
Genome Biology
25 publications, 1.05%
|
|
|
bioRxiv
24 publications, 1.01%
|
|
|
BMC Genomics
21 publications, 0.89%
|
|
|
Nature Communications
20 publications, 0.84%
|
|
|
G3: Genes, Genomes, Genetics
20 publications, 0.84%
|
|
|
Molecular Biology and Evolution
20 publications, 0.84%
|
|
|
Molecular Ecology
19 publications, 0.8%
|
|
|
Bioinformatics
19 publications, 0.8%
|
|
|
Genome Research
19 publications, 0.8%
|
|
|
Scientific data
19 publications, 0.8%
|
|
|
Proceedings of the National Academy of Sciences of the United States of America
18 publications, 0.76%
|
|
|
Nucleic Acids Research
17 publications, 0.72%
|
|
|
GigaScience
15 publications, 0.63%
|
|
|
Trends in Genetics
12 publications, 0.51%
|
|
|
Nature
11 publications, 0.46%
|
|
|
Nature Reviews Genetics
11 publications, 0.46%
|
|
|
Scientific Reports
11 publications, 0.46%
|
|
|
eLife
10 publications, 0.42%
|
|
|
Science
10 publications, 0.42%
|
|
|
Molecular Ecology Resources
10 publications, 0.42%
|
|
|
Communications Biology
8 publications, 0.34%
|
|
|
Nature Genetics
7 publications, 0.3%
|
|
|
Trends in Ecology and Evolution
7 publications, 0.3%
|
|
|
F1000Research
6 publications, 0.25%
|
|
|
Genes
6 publications, 0.25%
|
|
|
Nature Methods
6 publications, 0.25%
|
|
|
200
400
600
800
1000
1200
1400
|
Publishers
|
200
400
600
800
1000
1200
1400
|
|
|
F1000 Research
1350 publications, 56.96%
|
|
|
Cold Spring Harbor Laboratory
263 publications, 11.1%
|
|
|
Oxford University Press
214 publications, 9.03%
|
|
|
Springer Nature
200 publications, 8.44%
|
|
|
Elsevier
86 publications, 3.63%
|
|
|
Wiley
69 publications, 2.91%
|
|
|
Frontiers Media S.A.
30 publications, 1.27%
|
|
|
MDPI
27 publications, 1.14%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
18 publications, 0.76%
|
|
|
American Association for the Advancement of Science (AAAS)
16 publications, 0.68%
|
|
|
eLife Sciences Publications
10 publications, 0.42%
|
|
|
Public Library of Science (PLoS)
8 publications, 0.34%
|
|
|
Taylor & Francis
8 publications, 0.34%
|
|
|
Annual Reviews
7 publications, 0.3%
|
|
|
Research Square Platform LLC
4 publications, 0.17%
|
|
|
Pensoft Publishers
3 publications, 0.13%
|
|
|
EDP Sciences
3 publications, 0.13%
|
|
|
American Physiological Society
3 publications, 0.13%
|
|
|
The American Association of Immunologists
2 publications, 0.08%
|
|
|
The Royal Society
2 publications, 0.08%
|
|
|
American Chemical Society (ACS)
2 publications, 0.08%
|
|
|
Maximum Academic Press
2 publications, 0.08%
|
|
|
GigaScience Press
2 publications, 0.08%
|
|
|
Rockefeller University Press
2 publications, 0.08%
|
|
|
PeerJ
2 publications, 0.08%
|
|
|
The Company of Biologists
1 publication, 0.04%
|
|
|
Mary Ann Liebert
1 publication, 0.04%
|
|
|
Spandidos Publications
1 publication, 0.04%
|
|
|
Eco-Vector LLC
1 publication, 0.04%
|
|
|
200
400
600
800
1000
1200
1400
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2.4k
Total citations:
2370
Citations from 2024:
1423
(60.05%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Rhie A. et al. Towards complete and error-free genome assemblies of all vertebrate species // Nature. 2021. Vol. 592. No. 7856. pp. 737-746.
GOST all authors (up to 50)
Copy
Rhie A. et al. Towards complete and error-free genome assemblies of all vertebrate species // Nature. 2021. Vol. 592. No. 7856. pp. 737-746.
Cite this
RIS
Cite this
BibTex (up to 50 authors)
Copy
@article{2021_Rhie,
author = {Arang Rhie and Shane A Mccarthy and Olivier Fedrigo and Joana Damas and Giulio Formenti and Sergey Koren and Marcela Uliano-Silva and William Chow and Arkarachai Fungtammasan and Juwan Kim and CHUL LEE and Byung June Ko and Mark Chaisson and Gregory L Gedman and Lindsey J Cantin and Françoise Thibaud-Nissen and Leanne Haggerty and Iliana Bista and Michelle Smith and Bettina Haase and Jacquelyn Mountcastle and Sylke Winkler and Sadye Paez and Jason Howard and Sonja C. Vernes and Tanya M Lama and Frank Grützner and Wesley C. Warren and Christopher N. Balakrishnan and David R. Burt and John George and Matthew T Biegler and David Iorns and Andrew P. Digby and Daryl Eason and Bruce Robertson and Taylor Edwards and Mark Wilkinson and George Turner and Axel Meyer and Andreas F. Kautt and Paolo Franchini and H. W. DETRICH and Hannes Svardal and Maximilian Wagner and Gavin J.P. Naylor and Martin Pippel and Milan Malinsky and Mark Mooney and Maria Simbirsky and others},
title = {Towards complete and error-free genome assemblies of all vertebrate species},
journal = {Nature},
year = {2021},
volume = {592},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1038/s41586-021-03451-0},
number = {7856},
pages = {737--746},
doi = {10.1038/s41586-021-03451-0}
}
Cite this
MLA
Copy
Rhie, Arang, et al. “Towards complete and error-free genome assemblies of all vertebrate species.” Nature, vol. 592, no. 7856, Apr. 2021, pp. 737-746. https://doi.org/10.1038/s41586-021-03451-0.
Profiles