Nature, volume 613, issue 7943, pages 274-279
Approaching the quantum limit in two-dimensional semiconductor contacts
Weisheng Li
1
,
Xiaoshu Gong
2
,
ZHIHAO YU
1
,
Liang Ma
2
,
Wenjie Sun
3
,
Si Gao
3, 4
,
Çağıl Köroğlu
5
,
Wenfeng Wang
1
,
Lei Liu
1
,
Taotao Li
1
,
Hongkai Ning
1
,
Dongxu Fan
1
,
Yifei Xu
1
,
Xuecou Tu
1
,
Tao Xu
6
,
Litao Sun
6
,
Wenhui Wang
2
,
Junpeng Lu
2
,
Zhen-Hua Ni
2
,
Jia Li
7
,
Xidong Duan
7
,
Peng Wang
3
,
Yuefeng Nie
3
,
Hao Qiu
1
,
Yi Shi
1
,
Eric Pop
5, 8, 9
,
Jinlan Wang
2
,
Xinran Wang
1, 10, 11
11
Suzhou Laboratory, Suzhou, China
|
Publication type: Journal Article
Publication date: 2023-01-11
Multidisciplinary
Abstract
The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3–12. In particular, the contact resistance has not surpassed that of covalently bonded metal–semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ( $$01\bar{1}2$$ ) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal–oxide–semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ( $$01\bar{1}2$$ ) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon. The electrical contact of two-dimensional transistors is pushed close to the quantum limit by hybridization of the energy bands with antimony; the contacts have low contact resistance and excellent stability.
Nothing found, try to update filter.
Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers
Jones A.J., Muzzio R., Pakdel S., Biswas D., Curcio D., Lanatà N., Hofmann P., McCreary K.M., Jonker B.T., Watanabe K., Taniguchi T., Singh S., Koch R.J., Jozwiak C., Rotenberg E., et. al.
Kumar A., Schauble K., Neilson K.M., Tang A., Ramesh P., Wong H.-., Pop E., Saraswat K.
O'Brien K.P., Dorow C.J., Penumatcha A., Maxey K., Lee S., Naylor C.H., Hsiao A., Holybee B., Rogan C., Adams D., Tronic T., Ma S., Oni A., Gupta A.S., Bristol R., et. al.
Chou A., Wu T., Cheng C., Zhan S., Ni I., Wang S., Chang Y., Liew S., Chen E., Chang W., Wu C., Cai J., Wong H.-., Wang H.
Shen P., Su C., Lin Y., Chou A., Cheng C., Park J., Chiu M., Lu A., Tang H., Tavakoli M.M., Pitner G., Ji X., Cai Z., Mao N., Wang J., et. al.
Ahmed Z., Afzalian A., Schram T., Jang D., Verreck D., Smets Q., Schuddinck P., Chehab B., Sutar S., Arutchelvan G., Soussou A., Asselberghs I., Spessot A., Radu I.P., Parvais B., et. al.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.