Scientific discovery in the age of artificial intelligence
Hanchen Wang
1, 2, 3, 4
,
Tianfan Fu
5
,
Yuanqi Du
6
,
Wenhao Gao
7
,
Kexin Huang
4
,
Ziming Liu
8
,
Payal Chandak
9
,
Shengchao Liu
10, 11
,
Peter Van Katwyk
12, 13
,
Andreea Deac
10, 11
,
Anima Anandkumar
2, 14
,
Karianne Bergen
12, 13
,
Carla P. Gomes
6
,
Shirley Ho
15, 16, 17, 18
,
Pushmeet Kohli
19
,
Joan Lasenby
1
,
Jure Leskovec
4
,
Tie-Yan Liu
20
,
Arjun Manrai
21
,
Debora S. Marks
22, 23
,
Bharath Ramsundar
24
,
Le Song
25, 26
,
Jimeng Sun
27
,
Jian Tang
10, 28, 29
,
Petar VeliČković
19, 30
,
Max Welling
31, 32
,
Linfeng Zhang
33, 34
,
Connor W. Coley
7, 35
,
Yoshua Bengio
10, 11
,
Marinka Zitnik
21, 23, 36, 37
2
3
Department of Research and Early Development, Genentech Inc, South San Francisco, USA
|
5
10
Mila – Quebec AI institute, Montreal, Canada
|
20
Microsoft Research, Beijing, China
|
24
Deep Forest Sciences, Palo Alto, USA
|
25
BioMap, Beijing, China
|
28
Hec Montréal, Montreal, Canada
|
32
Microsoft Research Amsterdam, Amsterdam, Netherlands
|
33
DP Technology, Beijing, China
|
34
AI for Science Institute, Beijing, China
|
Тип публикации: Journal Article
Дата публикации: 2023-08-02
scimago Q1
wos Q1
БС1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
37532811
Multidisciplinary
Краткое описание
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI tools need a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation. The advances in artificial intelligence over the past decade are examined, with a discussion on how artificial intelligence systems can aid the scientific process and the central issues that remain despite advances.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
2
4
6
8
10
12
14
16
|
|
|
Scientific Reports
15 публикаций, 1.39%
|
|
|
SSRN Electronic Journal
13 публикаций, 1.21%
|
|
|
Nature Communications
13 публикаций, 1.21%
|
|
|
Digital Discovery
11 публикаций, 1.02%
|
|
|
Advanced Materials
8 публикаций, 0.74%
|
|
|
Journal of Chemical Information and Modeling
8 публикаций, 0.74%
|
|
|
Machine Learning: Science and Technology
8 публикаций, 0.74%
|
|
|
Lecture Notes in Computer Science
8 публикаций, 0.74%
|
|
|
Nature Machine Intelligence
7 публикаций, 0.65%
|
|
|
Advanced Functional Materials
7 публикаций, 0.65%
|
|
|
npj Computational Materials
7 публикаций, 0.65%
|
|
|
Angewandte Chemie
6 публикаций, 0.56%
|
|
|
Angewandte Chemie - International Edition
6 публикаций, 0.56%
|
|
|
Engineering Applications of Artificial Intelligence
6 публикаций, 0.56%
|
|
|
Analytical Chemistry
6 публикаций, 0.56%
|
|
|
Advanced Science
6 публикаций, 0.56%
|
|
|
AI and Ethics
6 публикаций, 0.56%
|
|
|
Humanities and Social Sciences Communications
6 публикаций, 0.56%
|
|
|
Nature
5 публикаций, 0.46%
|
|
|
Nature Computational Science
5 публикаций, 0.46%
|
|
|
Sustainability
4 публикации, 0.37%
|
|
|
Journal of Chemical Theory and Computation
4 публикации, 0.37%
|
|
|
Science Bulletin
4 публикации, 0.37%
|
|
|
Applied Sciences (Switzerland)
4 публикации, 0.37%
|
|
|
PLoS ONE
4 публикации, 0.37%
|
|
|
Science
4 публикации, 0.37%
|
|
|
Journal of Chemical Education
4 публикации, 0.37%
|
|
|
JACS Au
4 публикации, 0.37%
|
|
|
IEEE Access
4 публикации, 0.37%
|
|
|
2
4
6
8
10
12
14
16
|
Издатели
|
50
100
150
200
250
|
|
|
Springer Nature
249 публикаций, 23.1%
|
|
|
Elsevier
243 публикации, 22.54%
|
|
|
Wiley
94 публикации, 8.72%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
84 публикации, 7.79%
|
|
|
MDPI
55 публикаций, 5.1%
|
|
|
American Chemical Society (ACS)
53 публикации, 4.92%
|
|
|
Royal Society of Chemistry (RSC)
29 публикаций, 2.69%
|
|
|
Taylor & Francis
27 публикаций, 2.5%
|
|
|
Cold Spring Harbor Laboratory
22 публикации, 2.04%
|
|
|
IOP Publishing
19 публикаций, 1.76%
|
|
|
Oxford University Press
19 публикаций, 1.76%
|
|
|
Frontiers Media S.A.
15 публикаций, 1.39%
|
|
|
SAGE
14 публикаций, 1.3%
|
|
|
AIP Publishing
13 публикаций, 1.21%
|
|
|
IGI Global
12 публикаций, 1.11%
|
|
|
Association for Computing Machinery (ACM)
12 публикаций, 1.11%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
10 публикаций, 0.93%
|
|
|
American Physical Society (APS)
7 публикаций, 0.65%
|
|
|
Social Science Electronic Publishing
6 публикаций, 0.56%
|
|
|
Public Library of Science (PLoS)
6 публикаций, 0.56%
|
|
|
Emerald
5 публикаций, 0.46%
|
|
|
American Association for the Advancement of Science (AAAS)
5 публикаций, 0.46%
|
|
|
Annual Reviews
5 публикаций, 0.46%
|
|
|
Optica Publishing Group
4 публикации, 0.37%
|
|
|
American Geophysical Union
4 публикации, 0.37%
|
|
|
Walter de Gruyter
4 публикации, 0.37%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
3 публикации, 0.28%
|
|
|
The Royal Society
3 публикации, 0.28%
|
|
|
Science in China Press
3 публикации, 0.28%
|
|
|
50
100
150
200
250
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1.1k
Всего цитирований:
1087
Цитирований c 2024:
1008
(93.51%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Wang H. et al. Scientific discovery in the age of artificial intelligence // Nature. 2023. Vol. 620. No. 7972. pp. 47-60.
ГОСТ со всеми авторами (до 50)
Скопировать
Wang H. et al. Scientific discovery in the age of artificial intelligence // Nature. 2023. Vol. 620. No. 7972. pp. 47-60.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41586-023-06221-2
UR - https://doi.org/10.1038/s41586-023-06221-2
TI - Scientific discovery in the age of artificial intelligence
T2 - Nature
AU - Wang, Hanchen
AU - Fu, Tianfan
AU - Du, Yuanqi
AU - Gao, Wenhao
AU - Huang, Kexin
AU - Liu, Ziming
AU - Chandak, Payal
AU - Liu, Shengchao
AU - Van Katwyk, Peter
AU - Deac, Andreea
AU - Anandkumar, Anima
AU - Bergen, Karianne
AU - Gomes, Carla P.
AU - Ho, Shirley
AU - Kohli, Pushmeet
AU - Lasenby, Joan
AU - Leskovec, Jure
AU - Liu, Tie-Yan
AU - Manrai, Arjun
AU - Marks, Debora S.
AU - Ramsundar, Bharath
AU - Song, Le
AU - Sun, Jimeng
AU - Tang, Jian
AU - VeliČković, Petar
AU - Welling, Max
AU - Zhang, Linfeng
AU - Coley, Connor W.
AU - Bengio, Yoshua
AU - Zitnik, Marinka
PY - 2023
DA - 2023/08/02
PB - Springer Nature
SP - 47-60
IS - 7972
VL - 620
PMID - 37532811
SN - 0028-0836
SN - 1476-4687
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Wang,
author = {Hanchen Wang and Tianfan Fu and Yuanqi Du and Wenhao Gao and Kexin Huang and Ziming Liu and Payal Chandak and Shengchao Liu and Peter Van Katwyk and Andreea Deac and Anima Anandkumar and Karianne Bergen and Carla P. Gomes and Shirley Ho and Pushmeet Kohli and Joan Lasenby and Jure Leskovec and Tie-Yan Liu and Arjun Manrai and Debora S. Marks and Bharath Ramsundar and Le Song and Jimeng Sun and Jian Tang and Petar VeliČković and Max Welling and Linfeng Zhang and Connor W. Coley and Yoshua Bengio and Marinka Zitnik and others},
title = {Scientific discovery in the age of artificial intelligence},
journal = {Nature},
year = {2023},
volume = {620},
publisher = {Springer Nature},
month = {aug},
url = {https://doi.org/10.1038/s41586-023-06221-2},
number = {7972},
pages = {47--60},
doi = {10.1038/s41586-023-06221-2}
}
Цитировать
MLA
Скопировать
Wang, Hanchen, et al. “Scientific discovery in the age of artificial intelligence.” Nature, vol. 620, no. 7972, Aug. 2023, pp. 47-60. https://doi.org/10.1038/s41586-023-06221-2.
Профили