Open Access
Open access
Scientific Reports, volume 11, issue 1, publication number 19305

The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages

Wenyun Zeng 1
Danbin Wu 2, 3
Yingxin Sun 1
Yanrong Suo 4
Qun Yu 1
Miao Zeng 1
Qing Gao 1
Bin Yu 1
Xijuan Jiang 1
Yijing Wang 5
Show full list: 10 authors
Publication typeJournal Article
Publication date2021-09-29
scimago Q1
SJR0.900
CiteScore7.5
Impact factor3.8
ISSN20452322
Multidisciplinary
Abstract
NLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis. In this study, we used apoE−/− mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis. For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE−/− mice fed with high-fat diet for 12 weeks. For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h. MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE−/− mice. MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1β and IL-18 both in aorta and in cell lysates. However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages. The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.
Ma Q., Fan Q., Han X., Dong Z., Xu J., Bai J., Tao W., Sun D., Wang C.
Journal of Controlled Release scimago Q1 wos Q1
2021-01-01 citations by CoLab: 76 Abstract  
Atherosclerosis is a kind of chronic inflammatory diseases characterized by dysfunction of local immune responses. Here we engineer platelet-derived extracellular vesicles (PEVs) to load MCC950, an NLRP3-inflammasome inhibitor, for atherosclerosis-targeted therapy. PEVs which are readily collected from the activated platelets selectively bind multiple cell types associated with the formation of atherosclerotic plaque in vivo . Intravenous administration of MCC950-PEVs could significantly reduce the formation of atherosclerotic plaques, lower the local inflammation and inhibit proliferation of macrophages and T cells at the plaque site compared with free drug administration in ApoE-KO mice. Our strategy suggests the promise of PEVs for targeted drug delivery for treatment of atherosclerosis.
Sharma A., Choi J.S., Stefanovic N., Al-Sharea A., Simpson D.S., Mukhamedova N., Jandeleit-Dahm K., Murphy A.J., Sviridov D., Vince J.E., Ritchie R.H., de Haan J.B.
Diabetes scimago Q1 wos Q1
2020-12-15 citations by CoLab: 108 Abstract  
Low-grade persistent inflammation is a feature of diabetes-driven vascular complications, in particular activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome to trigger the maturation and release of the inflammatory cytokine interleukin-1β (IL-1β). We investigated whether inhibiting the NLRP3 inflammasome, through the use of the specific small-molecule NLRP3 inhibitor MCC950, could reduce inflammation, improve vascular function, and protect against diabetes-associated atherosclerosis in the streptozotocin-induced diabetic apolipoprotein E-knockout mouse. Diabetes led to an approximately fourfold increase in atherosclerotic lesions throughout the aorta, which were significantly attenuated with MCC950 (P < 0.001). This reduction in lesions was associated with decreased monocyte–macrophage content, reduced necrotic core, attenuated inflammatory gene expression (IL-1β, tumor necrosis factor-α, intracellular adhesion molecule 1, and MCP-1; P < 0.05), and reduced oxidative stress, while maintaining fibrous cap thickness. Additionally, vascular function was improved in diabetic vessels of mice treated with MCC950 (P < 0.05). In a range of cell lines (murine bone marrow–derived macrophages, human monocytic THP-1 cells, phorbol 12-myristate 13-acetate–differentiated human macrophages, and aortic smooth muscle cells from humans with diabetes), MCC950 significantly reduced IL-1β and/or caspase-1 secretion and attenuated leukocyte–smooth muscle cell interactions under high glucose or lipopolysaccharide conditions. In summary, MCC950 reduces plaque development, promotes plaque stability, and improves vascular function, suggesting that targeting NLRP3-mediated inflammation is a novel therapeutic strategy to improve diabetes-associated vascular disease.
McKee C.M., Coll R.C.
Journal of Leukocyte Biology scimago Q1 wos Q2
2020-08-03 citations by CoLab: 154 Abstract  
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is an immunological sensor that detects a wide range of microbial- and host-derived signals. Inflammasome activation results in the release of the potent pro-inflammatory cytokines IL-1β and IL-18 and triggers a form of inflammatory cell death known as pyroptosis. Excessive NLRP3 activity is associated with the pathogenesis of a wide range of inflammatory diseases, thus NLRP3 activation mechanisms are an area of intensive research. NLRP3 inflammasome activation is a tightly regulated process that requires both priming and activation signals. In particular, recent research has highlighted the highly complex nature of the priming step, which involves transcriptional and posttranslational mechanisms, and numerous protein binding partners. This review will describe the current understanding of NLRP3 priming and will discuss the potential opportunities for targeting this process therapeutically to treat NLRP3-associated diseases.
Poznyak A.V., Melnichenko A.A., Wetzker R., Gerasimova E.V., Orekhov A.N.
Biomedicines scimago Q1 wos Q1 Open Access
2020-07-10 citations by CoLab: 29 PDF Abstract  
Atherosclerosis is a serious disorder, with numerous potential complications such as cardiovascular disease, ischemic stroke, and myocardial infarction. The origin of atherosclerosis is related to chronic inflammation, lipid metabolism alterations, and oxidative stress. Inflammasomes are the cytoplasmic multiprotein complex triggering the activation of inflammatory response. NLRP3 inflammasomes have a specific activation pathway that involves numerous stimuli, including a wide range of PAMPs and DAMPs. Recent studies of atherosclerotic pathology are focused on the mitochondria that appear to be a promising target for therapeutic approach development. Mitochondria are the main source of reactive oxygen species (ROS) associated with oxidative stress. It was previously shown that NLRP3 inflammasome activation results in mitochondrial damage, but the exact mechanisms of this need to be specified. In this review, we focused on the features of NLRP3 inflammasomes and their significance for atherosclerosis, especially concerning mitochondria.
Wang Y., Ji N., Gong X., Ni S., Xu L., Zhang H.
Endocrine scimago Q2 wos Q2
2020-06-30 citations by CoLab: 21 Abstract  
The thioredoxin-1 has atheroprotective effects via regulating oxidative stress and inflammation. In addition, the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome also contributes to atherosclerosis development. However, whether the thioredoxin-1 suppresses atherosclerosis development by modulating the NLRP3 inflammasome remains unclear. The regulation of NLRP3 inflammasome by thioredoxin-1 was determined in vitro on macrophage cells after ox-LDL (oxidized low-density lipoprotein) stimulation. The IL-1β and caspase-1 p10 secretion were assessed by ELISA and western blot. Finally, the thioredoxin-1/NLRP3 inflammasome pathway was confirmed in apolipoprotein E-deficient mice. Thioredoxin-1 suppressed the expression of NLRP3, the secretion of IL-1β and caspase-1 p10 in vitro. And ROS stimulation activated the NLRP3 inflammasome which was inhibited by thioredoxin-1. In the mouse model of atherosclerosis, thioredoxin-1 delivered by lentivirus vector inhibited atherosclerosis development. And the atheroprotective effects of thioredoxin-1 were attenuated by ROS stimulation. Furthermore, the regulation of NLRP3 inflammasome by thioredoxin-1 was also confirmed in vivo. We demonstrated here that the thioredoxin-1 had atheroprotective functions through thioredoxin-1/NLRP3 inflammasome pathway.
Fu Q., Li J., Qiu L., Ruan J., Mao M., Li S., Mao Q.
2020-05-01 citations by CoLab: 40 Abstract  
• Surgery triggers NLRP3 inflammasome activation and cognitive deficits in aged mice. • The activation of NLRP3 inflammasome induces neuroinflammation. • MCC950 attenuates neuroinflammation and cognitive deficits after surgery in aged mice. Perioperative neurocognitive disorders (PND) are characterized by deficits in cognitive functions in the elderly following anesthesia and surgery. Effective clinical interventions for preventing this disease are limited. Growing evidence demonstrates that activation of NOD-like receptor protein3 (NLRP3) inflammasome is involved in neurodegenerative diseases. We therefore hypothesized that activation of NLRP3 inflammasome is linked to neuroinflammation and the subsequent cognitive impairments that occurred in an animal model of PND. In this study, 18-month-old C57BL/6 mice were subjected to an exploratory laparotomy under isoflurane anesthesia to mimic clinical human abdominal surgery. For interventional studies, mice received NLRP3 specific inhibitor MCC950 (10 mg/kg) or the vehicle only intraperitoneally. Behavioral studies were performed at 6 and 7 d after surgery using open field and fear conditioning tests, respectively. Interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), ionized calcium-binding adaptor molecule-1 (IBA1) positive cells, glial fibrillary acidic protein (GFAP) positive cells, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 were measured at 3 days post-surgery. Brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) were measured at 7 days post-surgery. Our data indicates that surgery-induced cognitive impairments were associated with significant increases in IL-1β, IL-18, TNF-α, NLRP3, ASC, cleaved caspase-1, IBA1-positive cells and GFAP-positive cells, and decreases in BDNF and PSD95 expression in the hippocampus. Notably, administration with MCC950 attenuated inflammatory changes and rescued surgery-induced cognitive impairments. Our study suggests that surgery induces neuroinflammation and cognitive deficits that are partly attributed to the activation of NLRP3 inflammasome in the hippocampus of aged mice.
Wu D., Chen Y., Sun Y., Gao Q., Yu B., Jiang X., Guo M.
2020-03-31 citations by CoLab: 14 PDF Abstract  
This review focuses on current advances in researches of gasdermin family. The distinctive expression patterns and biological roles of members in this family were discussed. Most of them exhibit pore-forming activity on cell membranes and are executors for programmed cell death with cytokines release, and play roles in cancers and inflammation-driven diseases. Therefore, they can be used as potential therapeutic targets to treat related diseases.
Yin R., Zhu X., Wang J., Yang S., Ma A., Xiao Q., Song J., Pan X.
2019-11-29 citations by CoLab: 49 Abstract  
Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation can induce the secretion of IL-1β and IL-18 and after promoting the development of atherosclerosis. MiR-155 is an important microRNA that modulates inflammation in atherosclerosis, but the role of miR-155 in the regulation of the NLRP3 inflammasome is still unknown.The atherosclerosis model was set up using ApoE-/- mice, and the lentiviral vector (LV) was used to interfere the expression of miR-155. HE stains was used for plaque morphology, immunohistochemistry (IHC) and western blot were used for protein expression quantification. We used oxidized low-density lipoprotein (ox-LDL) to incubate PMA-preprocessed THP-1 macrophages and detected NLRP3 inflammasome activation and ERK1/2 phosphorylation by western blot and Enzyme-linked immunosorbent assay.HE stains showed that the intravascular plaques in the miR-155-up group were remarkably increased, compared with negative control (NC) group. Results of IHC showed that the expression of caspase-1 and IL-1β in the miR-155-up group was the highest of four groups, consist with the Western blot analysis. The results of in vitro experiment show that ox-LDL promoted NLRP3 inflammasome activation and ERK1/2 phosphorylation. Blocking the ERK1/2 pathway could inhibit ox-LDL-induced NLRP3 inflammasome activation. Moreover, we found that the overexpression of miR-155 promoted the activation of the ox-LDL-induced NLRP3 inflammasome, which could also be blocked by the ERK inhibitor U0126.MiR-155 aggravates the carotid AS lesion in ApoE-/- mice and exerts a regulatory effect on NLRP3 inflammasome activation in ox-LDL-induced macrophages via the ERK1/2 pathway.
Barrett T.J.
2019-11-14 citations by CoLab: 436 Abstract  
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Wu D., Chen Y., Sun Y., Gao Q., Li H., Yang Z., Wang Y., Jiang X., Yu B.
Inflammation scimago Q2 wos Q2
2019-10-23 citations by CoLab: 116 Abstract  
MCC950 has been proposed as a specific small molecule inhibitor that can selectively block NLRP3 inflammasome activation. However, the exact mechanism of its action is still ambiguous. Accumulating investigations imply that chloride efflux–dependent ASC speck oligomerization and potassium efflux–dependent activation of caspase-1 are the two relatively independent, but indispensable events for NLRP3 inflammasome activation. Previous studies suggested that influence of MCC950 on potassium efflux and its consequent events such as interaction between NEK7 and NLRP3 are limited. However, inhibiting chloride intracellular channel–dependent chloride efflux leads to a modification of inflammatory response, which is similar to the function of MCC950. Based on these findings, we shed new insights on the understanding of MCC950 that its function might correlate with chloride efflux, chloride intracellular channels, or other targets that act upstream of chloride efflux.
Mekni N., De Rosa M., Cipollina C., Gulotta M.R., De Simone G., Lombino J., Padova A., Perricone U.
2019-10-09 citations by CoLab: 21 PDF Abstract  
NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) activation has been linked to several chronic pathologies, including atherosclerosis, type-II diabetes, fibrosis, rheumatoid arthritis, and Alzheimer’s disease. Therefore, NLRP3 represents an appealing target for the development of innovative therapeutic approaches. A few companies are currently working on the discovery of selective modulators of NLRP3 inflammasome. Unfortunately, limited structural data are available for this target. To date, MCC950 represents one of the most promising noncovalent NLRP3 inhibitors. Recently, a possible region for the binding of MCC950 to the NLRP3 protein was described but no details were disclosed regarding the key interactions. In this communication, we present an in silico multiple approach as an insight useful for the design of novel NLRP3 inhibitors. In detail, combining different computational techniques, we propose consensus-retrieved protein residues that seem to be essential for the binding process and for the stabilization of the protein–ligand complex.
Zang Y., Chen D., Zhou B., Chen A., Wang J., Gao X., Chen Q., Li Y., Kang Y., Zhu G.
Vascular Pharmacology scimago Q1 wos Q2
2019-10-01 citations by CoLab: 32 Abstract  
Foam cell formation and monocytes adhesion are key events in pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. Fibronectin type III domain containing protein 5 (FNDC5) is a protein, which induces browning of fat and attenuates glucose/lipid metabolic derangements in obese mice. The present study was designed to determine the roles of FNDC5 in inhibiting foam cell formation and monocyte adhesion in VSMCs and its underlying mechanisms. Oxidized low-density lipoprotein (oxLDL) was used to induce foam cell formation and monocyte adhesion in human aortic VSMCs. Foam cell formation was evaluated by intracellular lipid droplets, cholesterol contents, and mRNA levels of acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT-1) and ATP binding cassette transporter A-1 (ABCA-1). Monocyte adhesion was evaluated by the number of monocytes adhered to VSMCs and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1). FNDC5 inhibited oxLDL-induced foam cell formation, monocyte adhesion, ABCA-1 mRNA downregulation, and ACAT-1, MCP-1 and VCAM-1 mRNA upregulation in VSMCs. It inhibited oxLDL-induced p65-NFκB nuclear translocation, NLRP3 upregulation, caspase-1 and IL-1β production. Inhibition of NFκB with BMS-345541 or inhibition of NLRP3 inflammasome with MCC950 showed similar effects to FNDC5 in attenuating the oxLDL-induced foam cell formation, monocyte adhesion, and caspase-1 and IL-1β production. The oxLDL-induced NLRP3 upregulation was prevented by BMS-345541 rather than MCC950. These results indicate that FNDC5 inhibits oxLDL-induced foam cell formation and monocyte adhesion in VSMCs via suppressing NFκB-mediated NLRP3 upregulation and IL-1β production.
Li M., Zhu X., Zhao B., Shi L., Wang W., Hu W., Qin S., Chen B., Zhou P., Qiu B., Gao Y., Liu B.
Cell Death and Disease scimago Q1 wos Q1 Open Access
2019-06-20 citations by CoLab: 195 PDF Abstract  
Adrenomedullin (ADM) exerts anti-oxidant, anti-inflammatory and anti-apoptotic effects in Leydig cells. However, the role and mechanism of ADM in the pyroptosis of Leydig cells are poorly understood. This study first showed the protective effects of ADM on the pyroptosis and biological functions of Leydig cells exposed to lipopolysaccharide (LPS) by promoting autophagy. Primary rat Leydig cells were treated with various concentrations of LPS and ADM, together with or without N-acetyl-L-cysteine (NAC) or 3-methyladenine (3-MA). Cell proliferation was detected through CCK-8 and BrdU incorporation assays, and ROS level was measured with the DCFDA assay. Real-time PCR, western blot, immunofluorescence, transmission electron microscopy, TUNEL and flow cytometry were performed to examine ADM’s effect on the pyroptosis, autophagy and steroidogenic enzymes of Leydig cells and AMPK/mTOR signalling. Like NAC, ADM dose-dependently reduced LPS-induced cytotoxicity and ROS overproduction. ADM also dose-dependently ameliorated LPS-induced pyroptosis by reversing the increased expression of NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD, caspase-3, caspase-7, TUNEL-positive and PI and active caspase-1 double-stained positive rate, DNA fragmentation and LDH concentration, which could be rescued via co-incubation with 3-MA. ADM dose-dependently increased autophagy in LPS-induced Leydig cells, as confirmed by the increased expression of LC3-I/II, Beclin-1 and ATG-5; decreased expression of p62 and autophagosomes formation; and increased LC3-II/LC3-I ratio. However, co-treatment with 3-MA evidently decreased autophagy. Furthermore, ADM dose-dependently rescued the expression of steroidogenic enzymes, including StAR, P450scc, 3β-HSD and CYP17, and testosterone production in LPS-induced Leydig cells. Like rapamycin, ADM dose-dependently enhanced AMPK phosphorylation but reduced mTOR phosphorylation in LPS-induced Leydig cells, which could be rescued via co-incubation with 3-MA. In addition, pyroptosis was further decreased, and autophagy was further promoted in LPS-induced Leydig cells upon co-treatment with ADM and rapamycin. ADM may protect the steroidogenic functions of Leydig cells against pyroptosis by activating autophagy via the ROS–AMPK–mTOR axis.
Jones L.P., Martin D.E., Murray J., Sancilio F., Tripp R.A.
Biomolecules scimago Q1 wos Q1 Open Access
2025-04-01 citations by CoLab: 0 PDF Abstract  
Probenecid has long been a versatile drug in pharmacological therapies, primarily known for blocking active tubular secretion in the kidney, affecting both endogenous substances like uric acid and exogenous ones like penicillin. Beyond its renal applications, probenecid has shown capabilities in crossing the blood–brain barrier and modulating the activity of various membrane channels and transporters. This compound has emerged as a potent antiviral agent, demonstrating efficacy against multiple viruses, including influenza, COVID-19, and RSV. Clinical trials with COVID-19 patients have confirmed its antiviral potential, sparking further investigation into its mechanisms of action. This study explores probenecid’s significant anti-inflammatory properties, focusing on its ability to inhibit inflammasome activation. Our study aims to unravel the anti-inflammatory effects of probenecid on the NLRP3 inflammasome and MAPK signaling pathways using murine macrophages as a relevant inflammation model. We reveal that probenecid treatment blocks JNK and ERK signaling without affecting p38 MAPK, suppressing NLRP3 inflammasome activation. Additionally, probenecid does not affect NFκB-directed protein expression, although it efficiently inhibits NLRP3 inflammasome outputs, e.g., IL-1β and pyroptosis. These results indicate probenecid’s potential therapeutic applications.
Zhang M., Lan H., Jiang M., Yang M., Chen H., Peng S., Wang X., Zhang Y., Huang X., Li L., Chen C., Hong J.
Journal of Hazardous Materials scimago Q1 wos Q1
2025-02-01 citations by CoLab: 2
Sieberer H., Luciano M., Amend D., Blöchl C., Eglseer A., Steinkellner A., Rieser S., Andosch A., Steiner P., Hummer L., Krenn P.W., Dang H., Huber C.G., Aberger F., Neuper T., et. al.
2025-01-28 citations by CoLab: 0 PDF Abstract  
Abstract FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles. Recent research has identified the NLRP3 inflammasome as a potential new driver in AML. Here, we investigated the efficacy of different NLRP3 inhibitors in targeting AML cells in vitro. Our findings reveal that NLRP3 inhibition induces cell cycle arrest as well as signs of senescence in multiple AML cell lines. In contrast, NLRP3 inhibition selectively induced apoptosis in FLT3 mutant AML cell lines, but not in FLT3 wild-type AML cells. Moreover, we show that NLRP3 inhibition impairs FLT3 signaling by reducing both FLT3 expression as well as downstream signaling in FLT3 mutant cells. A database analysis revealed a strong positive correlation between FLT3 and NLRP3 in cancer, which was particularly evident in AML patients. Strikingly, the simultaneous inhibition of NLRP3 and FLT3 markedly enhanced apoptosis in FLT3-ITD mutant AML cells, but not in FLT3 wild-type cells. In summary, this study reveals a promising combined therapeutic strategy specifically targeting NLRP3/FLT3-ITD positive AML blasts in vitro, highlighting a potential new avenue for AML treatment.
Chi J., Wang Q., Wang Z., Zeng W., Gao Y., Li X., Wang W., Wang J., Qu M.
Scientific Reports scimago Q1 wos Q1 Open Access
2025-01-04 citations by CoLab: 0 PDF Abstract  
Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls. The fluctuation and association for S100A8 and interleukin-1 beta (IL-1β) in the specimens was assessed using enzyme-linked immunosorbent assay. We also used the human recombinant protein S100A8 to activate human umbilical vein endothelial cells and created a rat model to explore the possible relationship between them. Studies have shown that the infiltration of S100A8 sustains local inflammation and thrombus formation, which may exacerbate DVT by amplifying NLRP3/Caspase-1/IL-1β signals in the vascular endothelial cells.
Yang W., Zeng S., Shao R., Jin R., Huang J., Wang X., Liu E., Zhou T., Li F., Chen Y., Chen D.
2025-01-01 citations by CoLab: 1
Sun R., Chu J., Li P.
Frontiers in Immunology scimago Q1 wos Q1 Open Access
2024-12-11 citations by CoLab: 0 PDF Abstract  
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Cai G., Song X., Luo H., Dai G., Zhang H., Jiang D., Lei X., Chen H., Zhang L.
2024-12-01 citations by CoLab: 2 Abstract  
Obesity and type 2 diabetes mellitus (T2DM) are linked to osteoporosis development, with obesity being a significant risk factor for T2DM. T2DM patients with obesity exhibit a higher fracture rate and often have a poor prognosis post-fracture. To address the urgent need for understanding the mechanisms of diabetic osteoporosis (DOP), research is ongoing to explore how obesity and T2DM impact bone metabolism. The NLRP3 inflammasome has been implicated in the pathogenesis of osteoporosis, and MCC950, an NLRP3 inflammasome inhibitor, has shown promise in various diseases but its role in osteoporosis remains unexplored. In this study, BMMs and BMSCs were isolated and cultured to investigate the effects of MCC950 on bone metabolism, and DOP model was used to evaluate the efficacy of MCC950 in vivo. The study demonstrated that MCC950 treatment inhibited osteoclast differentiation, reduced bone resorption capacity in BMMs without suppression for osteoblast differentiation from BMSCs. Additionally, MCC950 suppressed the activation of the NF-κB signaling pathway and downregulated key factors associated with osteoclast differentiation. Additionally, MCC950 alleviated bone loss in DOP mouse. These findings suggest that MCC950, by targeting the NLRP3 inflammasome, may have a protective role in preventing osteoporosis induced by T2DM with obesity. The study highlights the potential therapeutic implications of MCC950 in managing diabetic osteoporosis and calls for further research to explore its clinical application in high-risk patient populations.
Sengul G.F., Secer-Celik F., Pisiren G.
2024-11-27 citations by CoLab: 1 Abstract  
Cell death is a fundamental mechanism of life that is directly associated with organismal growth, development, aging, and diseases and is highly studied life science topic from 1960s to the present day. Cell death can be classified as accidental cell death (ACD) and programmed cell death (PCD). ACD is a form of passive, sudden, and uncontrollable cell death induced by extreme physical, chemical, or mechanical changes in pressure, temperature, and/or osmatic pressure. In contrast to ACD, PCD is an active kind of cell death happening under physiological conditions regulated by genes to maintain hemostasis in healthy as well as pathological cells. There are unique biochemical and molecular processes enabling the pharmacological or genetic intervention of PCD. Advanced research in this field paved the way for the discovery of novel mechanisms in different types of PCD pathways. This chapter summarizes and compares biological and morphological characteristics, molecular mechanisms, and biochemical markers of various PCD pathways including apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Additionally, it also tries to explain the involvement of distinct PCD mechanisms in the diagnosis, pathological progression, and treatment of multiple organismal disorders, particularly in malignancies.
Liu Z., Xiang P., Zeng S., Weng P., Wen Y., Zhang W., Hu H., Zhao D., Ma L., Yu C.
Cell Death Discovery scimago Q1 wos Q1 Open Access
2024-11-13 citations by CoLab: 0 PDF Abstract  
AbstractVascular endothelial injury initiates atherosclerosis (AS) progression. N-Acetylneuraminic acid (Neu5Ac) metabolic disorder was found to intensify endothelial mitochondrial damage. And GLS2-associated glutaminolysis disorder contributed to mitochondrial dysfunction. However, mechanisms underlying Neu5Ac-associated mitochondrial dysfunction as well as its association with GLS2 remains unclear. In this study, we constructed GLS2−/−ApoE−/− mice by using HBLV-GLS2 shRNA injection. And methods like immunofluorescence, western blotting, transmission electron microscopy were applied to detect profiles of endothelial injury and AS progression both in vivo and in vitro. We demonstrated that Neu5Ac accumulation increased GLS2 expression and promoted glutaminolysis disorder, which further induced endothelial mitochondrial dysfunction via a pyroptosis-dependent pathway in vivo and in vitro. Mechanically, Neu5Ac interacted with SIRT3 and led to FOXO3a deacetylation and phosphorylation, further facilitated c-Myc antagonism and ultimately increased GLS2 levels. Inhibition of GLS2 could improve mitochondrial function and mitigate pyroptosis process. In addition, blocking Neu5Ac production using neuraminidases (NEUs) inhibitor could rescue endothelial damage and alleviate AS development in ApoE−/− mice. These findings proposed that Neu5Ac induced GLS2-mediated glutaminolysis disorder and then promoted mitochondrial dysfunction in a pyroptosis-dependent pathway. Targeting GLS2 or inhibiting Neu5Ac production could prevent AS progression.
Wei S., Han C., Mo S., Huang H., Luo X.
2024-11-02 citations by CoLab: 2 Abstract  
Cell death is a normal physiological process within cells that involves multiple pathways, such as normal DNA damage, cell cycle arrest, and programmed cell death (PCD). Cell death has been a hot spot of research in tumor-related fields, especially programmed cell death, which is a key form of cell death and is classified into different types according to the mechanism of occurrence, such as apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and disulfidptosis. Given the important role of PCD in maintaining tissue homeostasis and inhibiting tumorigenesis and development, more and more basic and clinical studies are devoted to revealing its potential application in anti-tumor strategies. The purpose of this review is to systematically review the regulatory mechanisms of PCD and to summarize the latest research progress of anti-tumor treatment strategies based on PCD.
Martins B., Mossemann J., Aguilar F., Zhao S., Bilan P.J., Sayed B.A.
Physiology scimago Q1 wos Q1
2024-11-01 citations by CoLab: 1 Abstract  
Liver transplantation has evolved into a mature clinical field, but scarcity of usable organs poses a unique challenge. Expanding the donor pool requires novel approaches for protecting hepatic physiology and cellular homeostasis. Here we define hepatocellular injury during transplantation, with an emphasis on modifiable cell death pathways as future therapeutics.
He Y., Shen B., Zhou X.
2024-10-22 citations by CoLab: 0 Abstract  
Mitochondria are essential organelles that play a pivotal role in a variety of biological processes, including energy production, metabolism, cell death, and inflammation. Interestingly, within these organelles lies a hidden component with the potential to activate the innate immune system: mitochondrial DNA (mtDNA). Pathogenic microorganisms invasion or danger signals can cause mitochondrial structures to become abnormal or dysfunctional, leading to the release of mtDNA into the cytoplasm, which in turn triggers the innate immune response. The leakage of mtDNA into the cytoplasm activates the cGAS-STING signaling pathway, which results in the production of type I interferons and inflammatory cytokines. Additionally, when mtDNA is oxidized, it can activate the NLRP3 inflammasome, leading to the initiation of various cell death mechanisms, such as pyroptosis. In this review, we delve into the role of mtDNA released from dysfunctional mitochondria as a potent activator of the immune system, which can lead to a cascade of inflammatory reactions. The engagement of the STING and NLRP3 inflammasomes is intricately linked to the development of inflammation, autoimmune disorders, and cancer. Targeting these pathways with specific agonists or inhibitors holds promise as a therapeutic strategy for a range of immune-related diseases and cancer.

Top-30

Journals

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

Publishers

5
10
15
20
25
30
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?