Nature, volume 576, issue 7787, pages 416-422

Prediction and observation of an antiferromagnetic topological insulator

Otrokov M M 1, 2, 3, 4
Bentmann H 5
Estyunin D 2
Zeugner A. 6
Aliev Z S 7, 8
Gaß S. 9
Wolter A.U.B. 9
Koroleva A V 2
SHIKIN A. M. 2
Blanco Rey M 3, 10
Hoffmann Markus 11
Rusinov I P 2, 12
Vyazovskaya A Yu 2, 12
Eremeev S V 2, 12, 13
Koroteev Yu.M. 12, 13
Kuznetsov V. M. 12
Freyse F 14
Sánchez Barriga J 14
Amiraslanov I R 8
Babanly M. B. 15
Mamedov N. T. 8
Zverev V. N. 16
Alfonsov A 9
Kataev V. 9
Büchner B. 9, 17
Schwier E. F. 18
Kumar S. 18
Kimura A. 19
PETACCIA L. 20
Di Santo G 20
Vidal R C 5
Schatz S. 5
Kißner K. 5
Ünzelmann M. 5
Min C.H. 5
MOSER SIMON 21
Peixoto T. R. F. 5
Reinert F 5
Ernst A. 11, 22
Echenique P. M. 3, 4, 10
Isaeva A. 9, 17
CHULKOV E. V. 2, 3, 4, 10
5
 
Experimentelle Physik VII, Universität Würzburg, Würzburg, Germany
10
 
Departamento de Física de Materiales UPV/EHU, San Sebastián, Spain
11
 
Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria
14
 
Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
18
 
Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-hiroshima, Japan
19
 
Department of Physical Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
20
 
ELETTRA Sincrotrone Trieste, Trieste, Italy
22
 
Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany
Publication typeJournal Article
Publication date2019-12-18
Journal: Nature
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor64.8
ISSN00280836, 14764687
Multidisciplinary
Abstract
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. An intrinsic antiferromagnetic topological insulator, MnBi2Te4, is theoretically predicted and then realized experimentally, with implications for the study of exotic quantum phenomena.

Citations by journals

20
40
60
80
100
120
140
160
180
Physical Review B
Physical Review B, 175, 25.66%
Physical Review B
175 publications, 25.66%
Nano Letters
Nano Letters, 34, 4.99%
Nano Letters
34 publications, 4.99%
Physical Review Letters
Physical Review Letters, 26, 3.81%
Physical Review Letters
26 publications, 3.81%
Physical Review Materials
Physical Review Materials, 23, 3.37%
Physical Review Materials
23 publications, 3.37%
Applied Physics Letters
Applied Physics Letters, 21, 3.08%
Applied Physics Letters
21 publications, 3.08%
Nature Communications
Nature Communications, 20, 2.93%
Nature Communications
20 publications, 2.93%
Physical Review Research
Physical Review Research, 18, 2.64%
Physical Review Research
18 publications, 2.64%
JETP Letters
JETP Letters, 13, 1.91%
JETP Letters
13 publications, 1.91%
Advanced Materials
Advanced Materials, 11, 1.61%
Advanced Materials
11 publications, 1.61%
Journal of Physics Condensed Matter
Journal of Physics Condensed Matter, 11, 1.61%
Journal of Physics Condensed Matter
11 publications, 1.61%
Journal Physics D: Applied Physics
Journal Physics D: Applied Physics, 11, 1.61%
Journal Physics D: Applied Physics
11 publications, 1.61%
Chinese Physics B
Chinese Physics B, 10, 1.47%
Chinese Physics B
10 publications, 1.47%
npj Quantum Materials
npj Quantum Materials, 9, 1.32%
npj Quantum Materials
9 publications, 1.32%
Journal of Physical Chemistry Letters
Journal of Physical Chemistry Letters, 9, 1.32%
Journal of Physical Chemistry Letters
9 publications, 1.32%
Physical Review X
Physical Review X, 8, 1.17%
Physical Review X
8 publications, 1.17%
npj Computational Materials
npj Computational Materials, 8, 1.17%
npj Computational Materials
8 publications, 1.17%
ACS Nano
ACS Nano, 8, 1.17%
ACS Nano
8 publications, 1.17%
Chinese Physics Letters
Chinese Physics Letters, 8, 1.17%
Chinese Physics Letters
8 publications, 1.17%
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics, 8, 1.17%
Physical Chemistry Chemical Physics
8 publications, 1.17%
Acta Physica Sinica
Acta Physica Sinica, 6, 0.88%
Acta Physica Sinica
6 publications, 0.88%
Journal of Applied Physics
Journal of Applied Physics, 6, 0.88%
Journal of Applied Physics
6 publications, 0.88%
Science China: Physics, Mechanics and Astronomy, 6, 0.88%
Science China: Physics, Mechanics and Astronomy
6 publications, 0.88%
Advanced Functional Materials
Advanced Functional Materials, 6, 0.88%
Advanced Functional Materials
6 publications, 0.88%
Journal of Materials Chemistry C
Journal of Materials Chemistry C, 6, 0.88%
Journal of Materials Chemistry C
6 publications, 0.88%
APL Materials
APL Materials, 5, 0.73%
APL Materials
5 publications, 0.73%
Science advances
Science advances, 5, 0.73%
Science advances
5 publications, 0.73%
Journal of Physical Chemistry C
Journal of Physical Chemistry C, 5, 0.73%
Journal of Physical Chemistry C
5 publications, 0.73%
Nanomaterials
Nanomaterials, 5, 0.73%
Nanomaterials
5 publications, 0.73%
Nature Materials
Nature Materials, 5, 0.73%
Nature Materials
5 publications, 0.73%
20
40
60
80
100
120
140
160
180

Citations by publishers

50
100
150
200
250
300
American Physical Society (APS)
American Physical Society (APS), 254, 37.24%
American Physical Society (APS)
254 publications, 37.24%
Springer Nature
Springer Nature, 83, 12.17%
Springer Nature
83 publications, 12.17%
American Chemical Society (ACS)
American Chemical Society (ACS), 68, 9.97%
American Chemical Society (ACS)
68 publications, 9.97%
IOP Publishing
IOP Publishing, 60, 8.8%
IOP Publishing
60 publications, 8.8%
Wiley
Wiley, 38, 5.57%
Wiley
38 publications, 5.57%
American Institute of Physics (AIP)
American Institute of Physics (AIP), 36, 5.28%
American Institute of Physics (AIP)
36 publications, 5.28%
Elsevier
Elsevier, 27, 3.96%
Elsevier
27 publications, 3.96%
Royal Society of Chemistry (RSC)
Royal Society of Chemistry (RSC), 25, 3.67%
Royal Society of Chemistry (RSC)
25 publications, 3.67%
Pleiades Publishing
Pleiades Publishing, 24, 3.52%
Pleiades Publishing
24 publications, 3.52%
Multidisciplinary Digital Publishing Institute (MDPI)
Multidisciplinary Digital Publishing Institute (MDPI), 13, 1.91%
Multidisciplinary Digital Publishing Institute (MDPI)
13 publications, 1.91%
American Association for the Advancement of Science (AAAS)
American Association for the Advancement of Science (AAAS), 10, 1.47%
American Association for the Advancement of Science (AAAS)
10 publications, 1.47%
Science in China Press, 7, 1.03%
Science in China Press
7 publications, 1.03%
Chinese Physical Society
Chinese Physical Society, 6, 0.88%
Chinese Physical Society
6 publications, 0.88%
Oxford University Press
Oxford University Press, 4, 0.59%
Oxford University Press
4 publications, 0.59%
Proceedings of the National Academy of Sciences (PNAS)
Proceedings of the National Academy of Sciences (PNAS), 4, 0.59%
Proceedings of the National Academy of Sciences (PNAS)
4 publications, 0.59%
Taylor & Francis
Taylor & Francis, 2, 0.29%
Taylor & Francis
2 publications, 0.29%
Uspekhi Fizicheskikh Nauk Journal
Uspekhi Fizicheskikh Nauk Journal, 1, 0.15%
Uspekhi Fizicheskikh Nauk Journal
1 publication, 0.15%
World Scientific
World Scientific, 1, 0.15%
World Scientific
1 publication, 0.15%
The Electrochemical Society
The Electrochemical Society, 1, 0.15%
The Electrochemical Society
1 publication, 0.15%
Cambridge University Press
Cambridge University Press, 1, 0.15%
Cambridge University Press
1 publication, 0.15%
Walter de Gruyter
Walter de Gruyter, 1, 0.15%
Walter de Gruyter
1 publication, 0.15%
Annual Reviews
Annual Reviews, 1, 0.15%
Annual Reviews
1 publication, 0.15%
Stichting SciPost, 1, 0.15%
Stichting SciPost
1 publication, 0.15%
Japan Society of Applied Physics
Japan Society of Applied Physics, 1, 0.15%
Japan Society of Applied Physics
1 publication, 0.15%
50
100
150
200
250
300
  • We do not take into account publications that without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Otrokov M. M. et al. Prediction and observation of an antiferromagnetic topological insulator // Nature. 2019. Vol. 576. No. 7787. pp. 416-422.
GOST all authors (up to 50) Copy
Otrokov M. M. et al. Prediction and observation of an antiferromagnetic topological insulator // Nature. 2019. Vol. 576. No. 7787. pp. 416-422.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-019-1840-9
UR - https://doi.org/10.1038%2Fs41586-019-1840-9
TI - Prediction and observation of an antiferromagnetic topological insulator
T2 - Nature
AU - Bentmann, H
AU - Estyunin, D
AU - Zeugner, A.
AU - Gaß, S.
AU - Wolter, A.U.B.
AU - Koroleva, A V
AU - Blanco Rey, M
AU - Vyazovskaya, A Yu
AU - Eremeev, S V
AU - Koroteev, Yu.M.
AU - Kuznetsov, V. M.
AU - Freyse, F
AU - Amiraslanov, I R
AU - Mamedov, N. T.
AU - Abdullayev, N A
AU - Zverev, V. N.
AU - Alfonsov, A
AU - Kataev, V.
AU - Büchner, B.
AU - Kimura, A.
AU - PETACCIA, L.
AU - Di Santo, G
AU - Vidal, R C
AU - Schatz, S.
AU - Kißner, K.
AU - Ünzelmann, M.
AU - Min, C.H.
AU - MOSER, SIMON
AU - Peixoto, T. R. F.
AU - Reinert, F
AU - Echenique, P. M.
AU - Isaeva, A.
AU - Otrokov, M M
AU - Klimovskikh, I I
AU - SHIKIN, A. M.
AU - Hoffmann, Markus
AU - Schwier, E. F.
AU - Kumar, S.
AU - Aliev, Z S
AU - Rusinov, I P
AU - Sánchez Barriga, J
AU - Babanly, M. B.
AU - Ernst, A.
AU - CHULKOV, E. V.
PY - 2019
DA - 2019/12/18 00:00:00
PB - Springer Nature
SP - 416-422
IS - 7787
VL - 576
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex Copy
@article{2019_Otrokov
author = {H Bentmann and D Estyunin and A. Zeugner and S. Gaß and A.U.B. Wolter and A V Koroleva and M Blanco Rey and A Yu Vyazovskaya and S V Eremeev and Yu.M. Koroteev and V. M. Kuznetsov and F Freyse and I R Amiraslanov and N. T. Mamedov and N A Abdullayev and V. N. Zverev and A Alfonsov and V. Kataev and B. Büchner and A. Kimura and L. PETACCIA and G Di Santo and R C Vidal and S. Schatz and K. Kißner and M. Ünzelmann and C.H. Min and SIMON MOSER and T. R. F. Peixoto and F Reinert and P. M. Echenique and A. Isaeva and M M Otrokov and I I Klimovskikh and A. M. SHIKIN and Markus Hoffmann and E. F. Schwier and S. Kumar and Z S Aliev and I P Rusinov and J Sánchez Barriga and M. B. Babanly and A. Ernst and E. V. CHULKOV},
title = {Prediction and observation of an antiferromagnetic topological insulator},
journal = {Nature},
year = {2019},
volume = {576},
publisher = {Springer Nature},
month = {dec},
url = {https://doi.org/10.1038%2Fs41586-019-1840-9},
number = {7787},
pages = {416--422},
doi = {10.1038/s41586-019-1840-9}
}
MLA
Cite this
MLA Copy
Otrokov, M. M., et al. “Prediction and observation of an antiferromagnetic topological insulator.” Nature, vol. 576, no. 7787, Dec. 2019, pp. 416-422. https://doi.org/10.1038%2Fs41586-019-1840-9.
Found error?