Prediction and observation of an antiferromagnetic topological insulator
M M Otrokov
1, 2, 3, 4
,
I I Klimovskikh
4
,
H Bentmann
5
,
D Estyunin
4
,
A. Zeugner
6
,
Z S Aliev
7, 8
,
S. Gaß
9
,
A.U.B. Wolter
9
,
A V Koroleva
4
,
A. M. SHIKIN
4
,
M Blanco Rey
3, 10
,
Markus Hoffmann
11
,
I P Rusinov
4, 12
,
A Yu Vyazovskaya
4, 12
,
S V Eremeev
4, 12, 13
,
Yu.M. Koroteev
12, 13
,
V. M. Kuznetsov
12
,
F Freyse
14
,
J Sánchez Barriga
14
,
I R Amiraslanov
7
,
M. B. Babanly
15
,
N. T. Mamedov
7
,
N A Abdullayev
7
,
V. N. Zverev
16
,
A Alfonsov
9
,
V. Kataev
9
,
B. Büchner
9, 17
,
E. F. Schwier
18
,
S. Kumar
18
,
A. Kimura
19
,
L. PETACCIA
20
,
G Di Santo
20
,
R C Vidal
5
,
S. Schatz
5
,
K. Kißner
5
,
M. Ünzelmann
5
,
C.H. Min
5
,
SIMON MOSER
21
,
T. R. F. Peixoto
5
,
F Reinert
5
,
A. Ernst
11, 22
,
P. M. Echenique
1, 3, 10
,
A. Isaeva
9, 17
,
E. V. CHULKOV
1, 3, 4, 10
1
13
Publication type: Journal Article
Publication date: 2019-12-18
scimago Q1
wos Q1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
31853084
Multidisciplinary
Abstract
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. An intrinsic antiferromagnetic topological insulator, MnBi2Te4, is theoretically predicted and then realized experimentally, with implications for the study of exotic quantum phenomena.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
50
100
150
200
250
|
|
|
Physical Review B
248 publications, 24.82%
|
|
|
Nano Letters
48 publications, 4.8%
|
|
|
Physical Review Materials
34 publications, 3.4%
|
|
|
Physical Review Letters
34 publications, 3.4%
|
|
|
Nature Communications
31 publications, 3.1%
|
|
|
Applied Physics Letters
30 publications, 3%
|
|
|
Physical Review Research
26 publications, 2.6%
|
|
|
JETP Letters
15 publications, 1.5%
|
|
|
Advanced Materials
15 publications, 1.5%
|
|
|
Journal of Physics Condensed Matter
15 publications, 1.5%
|
|
|
Chinese Physics B
15 publications, 1.5%
|
|
|
Advanced Functional Materials
15 publications, 1.5%
|
|
|
npj Quantum Materials
13 publications, 1.3%
|
|
|
npj Computational Materials
12 publications, 1.2%
|
|
|
ACS Nano
12 publications, 1.2%
|
|
|
Physical Chemistry Chemical Physics
12 publications, 1.2%
|
|
|
Journal of Physical Chemistry Letters
11 publications, 1.1%
|
|
|
Journal of Applied Physics
11 publications, 1.1%
|
|
|
Chinese Physics Letters
11 publications, 1.1%
|
|
|
Journal Physics D: Applied Physics
11 publications, 1.1%
|
|
|
National Science Review
11 publications, 1.1%
|
|
|
Physical Review X
10 publications, 1%
|
|
|
Science advances
9 publications, 0.9%
|
|
|
Journal of Physical Chemistry C
9 publications, 0.9%
|
|
|
Acta Physica Sinica
9 publications, 0.9%
|
|
|
Science China: Physics, Mechanics and Astronomy
9 publications, 0.9%
|
|
|
Письма в Журнал экспериментальной и теоретической физики
8 publications, 0.8%
|
|
|
Nature
7 publications, 0.7%
|
|
|
2D Materials
7 publications, 0.7%
|
|
|
50
100
150
200
250
|
Publishers
|
50
100
150
200
250
300
350
400
|
|
|
American Physical Society (APS)
357 publications, 35.74%
|
|
|
Springer Nature
125 publications, 12.51%
|
|
|
American Chemical Society (ACS)
100 publications, 10.01%
|
|
|
IOP Publishing
78 publications, 7.81%
|
|
|
Elsevier
60 publications, 6.01%
|
|
|
Wiley
59 publications, 5.91%
|
|
|
AIP Publishing
55 publications, 5.51%
|
|
|
Pleiades Publishing
35 publications, 3.5%
|
|
|
Royal Society of Chemistry (RSC)
35 publications, 3.5%
|
|
|
MDPI
17 publications, 1.7%
|
|
|
American Association for the Advancement of Science (AAAS)
15 publications, 1.5%
|
|
|
Science in China Press
11 publications, 1.1%
|
|
|
Oxford University Press
11 publications, 1.1%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
9 publications, 0.9%
|
|
|
Akademizdatcenter Nauka
6 publications, 0.6%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
4 publications, 0.4%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 0.3%
|
|
|
The Russian Academy of Sciences
3 publications, 0.3%
|
|
|
Taylor & Francis
2 publications, 0.2%
|
|
|
Uspekhi Fizicheskikh Nauk Journal
1 publication, 0.1%
|
|
|
World Scientific
1 publication, 0.1%
|
|
|
The Electrochemical Society
1 publication, 0.1%
|
|
|
Cambridge University Press
1 publication, 0.1%
|
|
|
Walter de Gruyter
1 publication, 0.1%
|
|
|
Annual Reviews
1 publication, 0.1%
|
|
|
Stichting SciPost
1 publication, 0.1%
|
|
|
Japan Society of Applied Physics
1 publication, 0.1%
|
|
|
Research Square Platform LLC
1 publication, 0.1%
|
|
|
OAE Publishing Inc.
1 publication, 0.1%
|
|
|
50
100
150
200
250
300
350
400
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
999
Total citations:
999
Citations from 2024:
325
(32%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Otrokov M. M. et al. Prediction and observation of an antiferromagnetic topological insulator // Nature. 2019. Vol. 576. No. 7787. pp. 416-422.
GOST all authors (up to 50)
Copy
Otrokov M. M. et al. Prediction and observation of an antiferromagnetic topological insulator // Nature. 2019. Vol. 576. No. 7787. pp. 416-422.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s41586-019-1840-9
UR - https://www.nature.com/articles/s41586-019-1840-9
TI - Prediction and observation of an antiferromagnetic topological insulator
T2 - Nature
AU - Otrokov, M M
AU - Klimovskikh, I I
AU - Bentmann, H
AU - Estyunin, D
AU - Zeugner, A.
AU - Aliev, Z S
AU - Gaß, S.
AU - Wolter, A.U.B.
AU - Koroleva, A V
AU - SHIKIN, A. M.
AU - Blanco Rey, M
AU - Hoffmann, Markus
AU - Rusinov, I P
AU - Vyazovskaya, A Yu
AU - Eremeev, S V
AU - Koroteev, Yu.M.
AU - Kuznetsov, V. M.
AU - Freyse, F
AU - Sánchez Barriga, J
AU - Amiraslanov, I R
AU - Babanly, M. B.
AU - Mamedov, N. T.
AU - Abdullayev, N A
AU - Zverev, V. N.
AU - Alfonsov, A
AU - Kataev, V.
AU - Büchner, B.
AU - Schwier, E. F.
AU - Kumar, S.
AU - Kimura, A.
AU - PETACCIA, L.
AU - Di Santo, G
AU - Vidal, R C
AU - Schatz, S.
AU - Kißner, K.
AU - Ünzelmann, M.
AU - Min, C.H.
AU - MOSER, SIMON
AU - Peixoto, T. R. F.
AU - Reinert, F
AU - Ernst, A.
AU - Echenique, P. M.
AU - Isaeva, A.
AU - CHULKOV, E. V.
PY - 2019
DA - 2019/12/18
PB - Springer Nature
SP - 416-422
IS - 7787
VL - 576
PMID - 31853084
SN - 0028-0836
SN - 1476-4687
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2019_Otrokov,
author = {M M Otrokov and I I Klimovskikh and H Bentmann and D Estyunin and A. Zeugner and Z S Aliev and S. Gaß and A.U.B. Wolter and A V Koroleva and A. M. SHIKIN and M Blanco Rey and Markus Hoffmann and I P Rusinov and A Yu Vyazovskaya and S V Eremeev and Yu.M. Koroteev and V. M. Kuznetsov and F Freyse and J Sánchez Barriga and I R Amiraslanov and M. B. Babanly and N. T. Mamedov and N A Abdullayev and V. N. Zverev and A Alfonsov and V. Kataev and B. Büchner and E. F. Schwier and S. Kumar and A. Kimura and L. PETACCIA and G Di Santo and R C Vidal and S. Schatz and K. Kißner and M. Ünzelmann and C.H. Min and SIMON MOSER and T. R. F. Peixoto and F Reinert and A. Ernst and P. M. Echenique and A. Isaeva and E. V. CHULKOV and others},
title = {Prediction and observation of an antiferromagnetic topological insulator},
journal = {Nature},
year = {2019},
volume = {576},
publisher = {Springer Nature},
month = {dec},
url = {https://www.nature.com/articles/s41586-019-1840-9},
number = {7787},
pages = {416--422},
doi = {10.1038/s41586-019-1840-9}
}
Cite this
MLA
Copy
Otrokov, M. M., et al. “Prediction and observation of an antiferromagnetic topological insulator.” Nature, vol. 576, no. 7787, Dec. 2019, pp. 416-422. https://www.nature.com/articles/s41586-019-1840-9.