volume 630 issue 8016 pages 493-500

Accurate structure prediction of biomolecular interactions with AlphaFold 3

Josh Abramson 1
Jonas Adler 1
Jack Dunger 1
Richard Evans 1
Timothy F G Green 1
Alexander Pritzel 1
Olaf Ronneberger 1
Lindsay Willmore 1
Andrew Ballard 1
Joshua Bambrick 2
Sebastian W. Bodenstein 1
David A Evans 1
Chia-Chun Hung 2
Michael O’Neill 1
David Reiman 1
Kathryn Tunyasuvunakool 1
Zachary Wu 1
Akvilė Žemgulytė 1
Eirini Arvaniti 3
Charles Beattie 3
Ottavia Bertolli 3
Alex Bridgland 3
Alexey Cherepanov 4
Miles Congreve 4
Alexander I. Cowen-Rivers 3
Andrew Cowie 3
Michael Figurnov 3
Fabian B Fuchs 3
Hannah Gladman 3
Rishub Jain 3
Yousuf A Khan 3, 5
Caroline M R Low 4
Kuba Perlin 3
Anna Potapenko 3
Pascal Savy 4
Sukhdeep Singh 3
Adrian Stecula 4
Ashok Thillaisundaram 3
Catherine Tong 4
Sergei Yakneen 4
Ellen Zhong 3, 6
Michal Zielinski 3
Augustin Žídek 3
Victor Bapst 1
Pushmeet Kohli 1
Max Jaderberg 2
D. Hassabis 1, 2
John M. Jumper 1
Publication typeJournal Article
Publication date2024-05-08
scimago Q1
wos Q1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Abstract

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2–6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein–ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein–nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody–antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.

Found 
Found 

Top-30

Journals

50
100
150
200
250
300
Nature Communications
294 publications, 3.6%
bioRxiv
152 publications, 1.86%
International Journal of Molecular Sciences
139 publications, 1.7%
International Journal of Biological Macromolecules
133 publications, 1.63%
Nucleic Acids Research
129 publications, 1.58%
Journal of Biological Chemistry
122 publications, 1.49%
Journal of Chemical Information and Modeling
113 publications, 1.38%
Proceedings of the National Academy of Sciences of the United States of America
101 publications, 1.24%
Journal of Agricultural and Food Chemistry
72 publications, 0.88%
Science advances
70 publications, 0.86%
Journal of Molecular Biology
68 publications, 0.83%
Journal of the American Chemical Society
66 publications, 0.81%
Advanced Science
65 publications, 0.79%
Communications Biology
63 publications, 0.77%
Nature
60 publications, 0.73%
Protein Science
60 publications, 0.73%
eLife
56 publications, 0.68%
Proteins: Structure, Function and Genetics
55 publications, 0.67%
Current Opinion in Structural Biology
53 publications, 0.65%
Scientific Reports
53 publications, 0.65%
Structure
51 publications, 0.62%
Science
47 publications, 0.57%
mBio
45 publications, 0.55%
Computational and Structural Biotechnology Journal
45 publications, 0.55%
Angewandte Chemie - International Edition
40 publications, 0.49%
Angewandte Chemie
40 publications, 0.49%
Biomolecules
39 publications, 0.48%
Biochemistry
39 publications, 0.48%
Briefings in Bioinformatics
38 publications, 0.46%
50
100
150
200
250
300

Publishers

200
400
600
800
1000
1200
1400
1600
1800
2000
Cold Spring Harbor Laboratory
1999 publications, 24.45%
Elsevier
1657 publications, 20.26%
Springer Nature
1210 publications, 14.8%
Wiley
660 publications, 8.07%
American Chemical Society (ACS)
609 publications, 7.45%
MDPI
460 publications, 5.63%
Oxford University Press
339 publications, 4.15%
Frontiers Media S.A.
160 publications, 1.96%
American Society for Microbiology
145 publications, 1.77%
American Association for the Advancement of Science (AAAS)
121 publications, 1.48%
Public Library of Science (PLoS)
107 publications, 1.31%
Proceedings of the National Academy of Sciences (PNAS)
101 publications, 1.24%
Taylor & Francis
86 publications, 1.05%
Royal Society of Chemistry (RSC)
80 publications, 0.98%
eLife Sciences Publications
56 publications, 0.68%
Institute of Electrical and Electronics Engineers (IEEE)
32 publications, 0.39%
Portland Press
26 publications, 0.32%
AIP Publishing
22 publications, 0.27%
International Union of Crystallography (IUCr)
19 publications, 0.23%
Rockefeller University Press
19 publications, 0.23%
American Society for Cell Biology (ASCB)
18 publications, 0.22%
The Company of Biologists
15 publications, 0.18%
Science in China Press
15 publications, 0.18%
Microbiology Society
14 publications, 0.17%
Annual Reviews
14 publications, 0.17%
The Royal Society
12 publications, 0.15%
SAGE
11 publications, 0.13%
Mary Ann Liebert
10 publications, 0.12%
Ovid Technologies (Wolters Kluwer Health)
9 publications, 0.11%
American Physical Society (APS)
8 publications, 0.1%
200
400
600
800
1000
1200
1400
1600
1800
2000
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
8.2k
Share
Cite this
GOST |
Cite this
GOST Copy
Abramson J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3 // Nature. 2024. Vol. 630. No. 8016. pp. 493-500.
GOST all authors (up to 50) Copy
Abramson J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3 // Nature. 2024. Vol. 630. No. 8016. pp. 493-500.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-024-07487-w
UR - https://www.nature.com/articles/s41586-024-07487-w
TI - Accurate structure prediction of biomolecular interactions with AlphaFold 3
T2 - Nature
AU - Abramson, Josh
AU - Adler, Jonas
AU - Dunger, Jack
AU - Evans, Richard
AU - Green, Timothy F G
AU - Pritzel, Alexander
AU - Ronneberger, Olaf
AU - Willmore, Lindsay
AU - Ballard, Andrew
AU - Bambrick, Joshua
AU - Bodenstein, Sebastian W.
AU - Evans, David A
AU - Hung, Chia-Chun
AU - O’Neill, Michael
AU - Reiman, David
AU - Tunyasuvunakool, Kathryn
AU - Wu, Zachary
AU - Žemgulytė, Akvilė
AU - Arvaniti, Eirini
AU - Beattie, Charles
AU - Bertolli, Ottavia
AU - Bridgland, Alex
AU - Cherepanov, Alexey
AU - Congreve, Miles
AU - Cowen-Rivers, Alexander I.
AU - Cowie, Andrew
AU - Figurnov, Michael
AU - Fuchs, Fabian B
AU - Gladman, Hannah
AU - Jain, Rishub
AU - Khan, Yousuf A
AU - Low, Caroline M R
AU - Perlin, Kuba
AU - Potapenko, Anna
AU - Savy, Pascal
AU - Singh, Sukhdeep
AU - Stecula, Adrian
AU - Thillaisundaram, Ashok
AU - Tong, Catherine
AU - Yakneen, Sergei
AU - Zhong, Ellen
AU - Zielinski, Michal
AU - Žídek, Augustin
AU - Bapst, Victor
AU - Kohli, Pushmeet
AU - Jaderberg, Max
AU - Hassabis, D.
AU - Jumper, John M.
PY - 2024
DA - 2024/05/08
PB - Springer Nature
SP - 493-500
IS - 8016
VL - 630
PMID - 38718835
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Abramson,
author = {Josh Abramson and Jonas Adler and Jack Dunger and Richard Evans and Timothy F G Green and Alexander Pritzel and Olaf Ronneberger and Lindsay Willmore and Andrew Ballard and Joshua Bambrick and Sebastian W. Bodenstein and David A Evans and Chia-Chun Hung and Michael O’Neill and David Reiman and Kathryn Tunyasuvunakool and Zachary Wu and Akvilė Žemgulytė and Eirini Arvaniti and Charles Beattie and Ottavia Bertolli and Alex Bridgland and Alexey Cherepanov and Miles Congreve and Alexander I. Cowen-Rivers and Andrew Cowie and Michael Figurnov and Fabian B Fuchs and Hannah Gladman and Rishub Jain and Yousuf A Khan and Caroline M R Low and Kuba Perlin and Anna Potapenko and Pascal Savy and Sukhdeep Singh and Adrian Stecula and Ashok Thillaisundaram and Catherine Tong and Sergei Yakneen and Ellen Zhong and Michal Zielinski and Augustin Žídek and Victor Bapst and Pushmeet Kohli and Max Jaderberg and D. Hassabis and John M. Jumper and others},
title = {Accurate structure prediction of biomolecular interactions with AlphaFold 3},
journal = {Nature},
year = {2024},
volume = {630},
publisher = {Springer Nature},
month = {may},
url = {https://www.nature.com/articles/s41586-024-07487-w},
number = {8016},
pages = {493--500},
doi = {10.1038/s41586-024-07487-w}
}
MLA
Cite this
MLA Copy
Abramson, Josh, et al. “Accurate structure prediction of biomolecular interactions with AlphaFold 3.” Nature, vol. 630, no. 8016, May. 2024, pp. 493-500. https://www.nature.com/articles/s41586-024-07487-w.