том 16 издание 8 страницы 687-694

Machine-learning-guided directed evolution for protein engineering

Тип публикацииJournal Article
Дата публикации2019-07-15
scimago Q1
wos Q1
БС1
SJR17.251
CiteScore49.0
Impact factor32.1
ISSN15487091, 15487105
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Краткое описание
Protein engineering through machine-learning-guided directed evolution enables the optimization of protein functions. Machine-learning approaches predict how sequence maps to function in a data-driven manner without requiring a detailed model of the underlying physics or biological pathways. Such methods accelerate directed evolution by learning from the properties of characterized variants and using that information to select sequences that are likely to exhibit improved properties. Here we introduce the steps required to build machine-learning sequence–function models and to use those models to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to the use of machine learning for protein engineering, as well as the current literature and applications of this engineering paradigm. We illustrate the process with two case studies. Finally, we look to future opportunities for machine learning to enable the discovery of unknown protein functions and uncover the relationship between protein sequence and function. This review provides an overview of machine learning techniques in protein engineering and illustrates the underlying principles with the help of case studies.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
35
Nature Communications
31 публикация, 3.48%
ACS Catalysis
22 публикации, 2.47%
ChemBioChem
15 публикаций, 1.68%
ACS Synthetic Biology
14 публикаций, 1.57%
Proceedings of the National Academy of Sciences of the United States of America
14 публикаций, 1.57%
Biotechnology Advances
13 публикаций, 1.46%
Cell Systems
11 публикаций, 1.23%
Journal of Chemical Information and Modeling
11 публикаций, 1.23%
Current Opinion in Biotechnology
10 публикаций, 1.12%
Briefings in Bioinformatics
10 публикаций, 1.12%
Nature Machine Intelligence
9 публикаций, 1.01%
PLoS Computational Biology
8 публикаций, 0.9%
International Journal of Molecular Sciences
8 публикаций, 0.9%
Computational and Structural Biotechnology Journal
8 публикаций, 0.9%
Journal of Agricultural and Food Chemistry
8 публикаций, 0.9%
bioRxiv
8 публикаций, 0.9%
Frontiers in Bioengineering and Biotechnology
7 публикаций, 0.78%
International Journal of Biological Macromolecules
7 публикаций, 0.78%
Chemical Society Reviews
7 публикаций, 0.78%
Methods in Molecular Biology
7 публикаций, 0.78%
Journal of the American Chemical Society
6 публикаций, 0.67%
Current Opinion in Structural Biology
6 публикаций, 0.67%
Chemical Reviews
6 публикаций, 0.67%
Angewandte Chemie - International Edition
6 публикаций, 0.67%
Angewandte Chemie
6 публикаций, 0.67%
Biochemistry
6 публикаций, 0.67%
Bioinformatics
6 публикаций, 0.67%
Nature Computational Science
5 публикаций, 0.56%
Molecules
5 публикаций, 0.56%
5
10
15
20
25
30
35

Издатели

20
40
60
80
100
120
140
160
180
200
Elsevier
197 публикаций, 22.09%
Cold Spring Harbor Laboratory
139 публикаций, 15.58%
Springer Nature
124 публикации, 13.9%
American Chemical Society (ACS)
113 публикаций, 12.67%
Wiley
88 публикаций, 9.87%
Royal Society of Chemistry (RSC)
31 публикация, 3.48%
Oxford University Press
30 публикаций, 3.36%
MDPI
29 публикаций, 3.25%
Frontiers Media S.A.
22 публикации, 2.47%
Institute of Electrical and Electronics Engineers (IEEE)
15 публикаций, 1.68%
Proceedings of the National Academy of Sciences (PNAS)
14 публикаций, 1.57%
Public Library of Science (PLoS)
10 публикаций, 1.12%
Taylor & Francis
7 публикаций, 0.78%
American Association for the Advancement of Science (AAAS)
7 публикаций, 0.78%
Research Square Platform LLC
5 публикаций, 0.56%
Bentham Science Publishers Ltd.
4 публикации, 0.45%
eLife Sciences Publications
4 публикации, 0.45%
Association for Computing Machinery (ACM)
3 публикации, 0.34%
AIP Publishing
3 публикации, 0.34%
Science in China Press
3 публикации, 0.34%
American Physical Society (APS)
2 публикации, 0.22%
Mary Ann Liebert
2 публикации, 0.22%
Portland Press
2 публикации, 0.22%
The Royal Society
2 публикации, 0.22%
Annual Reviews
2 публикации, 0.22%
IOP Publishing
2 публикации, 0.22%
American Society for Microbiology
2 публикации, 0.22%
Institution of Engineering and Technology (IET)
1 публикация, 0.11%
PeerJ
1 публикация, 0.11%
20
40
60
80
100
120
140
160
180
200
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
893
Поделиться
Цитировать
ГОСТ |
Цитировать
Yang* K. K., Wu Z., Arnold F. H. Machine-learning-guided directed evolution for protein engineering // Nature Methods. 2019. Vol. 16. No. 8. pp. 687-694.
ГОСТ со всеми авторами (до 50) Скопировать
Yang* K. K., Wu Z., Arnold F. H. Machine-learning-guided directed evolution for protein engineering // Nature Methods. 2019. Vol. 16. No. 8. pp. 687-694.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41592-019-0496-6
UR - https://doi.org/10.1038/s41592-019-0496-6
TI - Machine-learning-guided directed evolution for protein engineering
T2 - Nature Methods
AU - Yang*, Kevin K.
AU - Wu, Zachary
AU - Arnold, Frances H.
PY - 2019
DA - 2019/07/15
PB - Springer Nature
SP - 687-694
IS - 8
VL - 16
PMID - 31308553
SN - 1548-7091
SN - 1548-7105
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Yang*,
author = {Kevin K. Yang* and Zachary Wu and Frances H. Arnold},
title = {Machine-learning-guided directed evolution for protein engineering},
journal = {Nature Methods},
year = {2019},
volume = {16},
publisher = {Springer Nature},
month = {jul},
url = {https://doi.org/10.1038/s41592-019-0496-6},
number = {8},
pages = {687--694},
doi = {10.1038/s41592-019-0496-6}
}
MLA
Цитировать
Yang*, Kevin K., et al. “Machine-learning-guided directed evolution for protein engineering.” Nature Methods, vol. 16, no. 8, Jul. 2019, pp. 687-694. https://doi.org/10.1038/s41592-019-0496-6.