Open Access
Open access
volume 10 issue 1 publication number 13226

Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$

A. M. SHIKIN 1
D A Estyunin 1
S O Filnov 1
E. F. Schwier 2
S. Kumar 2
K. MIYAMOTO 2
T. Okuda 2
A. Kimura 3
K. Kuroda 4
K. YAJI 4
S Shin 4
Y. Takeda 5
Y. Saitoh 5
Z S Aliev 6, 7
N. T. Mamedov 7
I R Amiraslanov 7, 8
M. B. Babanly 8, 9
M M Otrokov 10, 11
S V Eremeev 1, 12, 13
E. V. CHULKOV 1, 13, 14, 15
Publication typeJournal Article
Publication date2020-08-06
scimago Q1
wos Q1
SJR0.874
CiteScore6.7
Impact factor3.9
ISSN20452322
Multidisciplinary
Abstract

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$ MnBi 2 Te 4 and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9–35 K), light polarizations and photon energies. We have distinguished both large (60–70 meV) and reduced ($$<20~ \hbox {meV}$$ < 20 meV ) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ($$T_{\mathrm{N}} = 24.5~ \hbox {K}$$ T N = 24.5 K ). We propose that the gap above $$T_{\mathrm{N}}$$ T N remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the “large gap” sample and apparently significantly reduced effective magnetic moment for the “reduced gap” sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
20
Physical Review B
19 publications, 22.35%
JETP Letters
7 publications, 8.24%
Scientific Reports
4 publications, 4.71%
Journal of Experimental and Theoretical Physics
3 publications, 3.53%
Physica B: Condensed Matter
3 publications, 3.53%
Nano Letters
3 publications, 3.53%
Physical Review Research
3 publications, 3.53%
Journal of Physical Chemistry Letters
2 publications, 2.35%
ACS Nano
2 publications, 2.35%
Applied Physics Letters
2 publications, 2.35%
Physical Review X
2 publications, 2.35%
Nature Communications
2 publications, 2.35%
Nature Physics
2 publications, 2.35%
Physical Review Materials
2 publications, 2.35%
National Science Review
2 publications, 2.35%
npj Quantum Materials
1 publication, 1.18%
Journal of Applied Physics
1 publication, 1.18%
Symmetry
1 publication, 1.18%
Frontiers of Physics
1 publication, 1.18%
NPG Asia Materials
1 publication, 1.18%
Physical Review Letters
1 publication, 1.18%
Calphad: Computer Coupling of Phase Diagrams and Thermochemistry
1 publication, 1.18%
Advanced Materials
1 publication, 1.18%
ACS Nanoscience Au
1 publication, 1.18%
Materials Today Electronics
1 publication, 1.18%
Nanomaterials
1 publication, 1.18%
Acta Physica Sinica
1 publication, 1.18%
Science China: Physics, Mechanics and Astronomy
1 publication, 1.18%
Crystallography Reports
1 publication, 1.18%
2
4
6
8
10
12
14
16
18
20

Publishers

5
10
15
20
25
30
American Physical Society (APS)
27 publications, 31.76%
Pleiades Publishing
14 publications, 16.47%
Springer Nature
12 publications, 14.12%
Elsevier
10 publications, 11.76%
American Chemical Society (ACS)
8 publications, 9.41%
AIP Publishing
3 publications, 3.53%
Wiley
3 publications, 3.53%
MDPI
2 publications, 2.35%
Oxford University Press
2 publications, 2.35%
Royal Society of Chemistry (RSC)
2 publications, 2.35%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 publication, 1.18%
Science in China Press
1 publication, 1.18%
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
85
Share
Cite this
GOST |
Cite this
GOST Copy
SHIKIN A. M. et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$ // Scientific Reports. 2020. Vol. 10. No. 1. 13226
GOST all authors (up to 50) Copy
SHIKIN A. M., Estyunin D. A., Klimovskikh I. I., Filnov S. O., Schwier E. F., Kumar S., MIYAMOTO K., Okuda T., Kimura A., Kuroda K., YAJI K., Shin S., Takeda Y., Saitoh Y., Aliev Z. S., Mamedov N. T., Amiraslanov I. R., Babanly M. B., Otrokov M. M., Eremeev S. V., CHULKOV E. V. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$ // Scientific Reports. 2020. Vol. 10. No. 1. 13226
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41598-020-70089-9
UR - https://www.nature.com/articles/s41598-020-70089-9
TI - Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$
T2 - Scientific Reports
AU - SHIKIN, A. M.
AU - Estyunin, D A
AU - Klimovskikh, I I
AU - Filnov, S O
AU - Schwier, E. F.
AU - Kumar, S.
AU - MIYAMOTO, K.
AU - Okuda, T.
AU - Kimura, A.
AU - Kuroda, K.
AU - YAJI, K.
AU - Shin, S
AU - Takeda, Y.
AU - Saitoh, Y.
AU - Aliev, Z S
AU - Mamedov, N. T.
AU - Amiraslanov, I R
AU - Babanly, M. B.
AU - Otrokov, M M
AU - Eremeev, S V
AU - CHULKOV, E. V.
PY - 2020
DA - 2020/08/06
PB - Springer Nature
IS - 1
VL - 10
PMID - 32764583
SN - 2045-2322
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2020_SHIKIN,
author = {A. M. SHIKIN and D A Estyunin and I I Klimovskikh and S O Filnov and E. F. Schwier and S. Kumar and K. MIYAMOTO and T. Okuda and A. Kimura and K. Kuroda and K. YAJI and S Shin and Y. Takeda and Y. Saitoh and Z S Aliev and N. T. Mamedov and I R Amiraslanov and M. B. Babanly and M M Otrokov and S V Eremeev and E. V. CHULKOV},
title = {Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator $${\hbox {MnBi}}_2 {\hbox {Te}}_4$$},
journal = {Scientific Reports},
year = {2020},
volume = {10},
publisher = {Springer Nature},
month = {aug},
url = {https://www.nature.com/articles/s41598-020-70089-9},
number = {1},
pages = {13226},
doi = {10.1038/s41598-020-70089-9}
}