From local explanations to global understanding with explainable AI for trees
Scott M Lundberg
1, 2
,
Gabriel Erion
2, 3
,
Hugh Chen
2
,
Alex Degrave
2, 3
,
Jordan M. Prutkin
4
,
Bala Nair
5, 6
,
Ronit Katz
7
,
Jonathan Himmelfarb
7
,
Nisha Bansal
7
,
Su-In Lee
2
1
Microsoft Research, Redmond, USA
|
2
Тип публикации: Journal Article
Дата публикации: 2020-01-17
scimago Q1
wos Q1
БС1
SJR: 5.876
CiteScore: 37.6
Impact factor: 23.9
ISSN: 25225839
PubMed ID:
32607472
Computer Networks and Communications
Artificial Intelligence
Software
Human-Computer Interaction
Computer Vision and Pattern Recognition
Краткое описание
Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Tree-based machine learning models are widely used in domains such as healthcare, finance and public services. The authors present an explanation method for trees that enables the computation of optimal local explanations for individual predictions, and demonstrate their method on three medical datasets.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
20
40
60
80
100
120
140
160
|
|
|
Scientific Reports
154 публикации, 2.52%
|
|
|
Lecture Notes in Computer Science
71 публикация, 1.16%
|
|
|
IEEE Access
66 публикаций, 1.08%
|
|
|
Nature Communications
66 публикаций, 1.08%
|
|
|
PLoS ONE
55 публикаций, 0.9%
|
|
|
Science of the Total Environment
55 публикаций, 0.9%
|
|
|
Applied Sciences (Switzerland)
52 публикации, 0.85%
|
|
|
Remote Sensing
45 публикаций, 0.74%
|
|
|
Environmental Science & Technology
43 публикации, 0.7%
|
|
|
Sustainable Cities and Society
38 публикаций, 0.62%
|
|
|
Expert Systems with Applications
34 публикации, 0.56%
|
|
|
Journal of Hydrology
33 публикации, 0.54%
|
|
|
Journal of Medical Internet Research
31 публикация, 0.51%
|
|
|
Journal of Hazardous Materials
29 публикаций, 0.47%
|
|
|
Engineering Applications of Artificial Intelligence
29 публикаций, 0.47%
|
|
|
SSRN Electronic Journal
29 публикаций, 0.47%
|
|
|
BMC Medical Informatics and Decision Making
27 публикаций, 0.44%
|
|
|
Sustainability
26 публикаций, 0.43%
|
|
|
Journal of Environmental Management
26 публикаций, 0.43%
|
|
|
Journal of Chemical Information and Modeling
25 публикаций, 0.41%
|
|
|
Sensors
24 публикации, 0.39%
|
|
|
Lecture Notes in Networks and Systems
24 публикации, 0.39%
|
|
|
Computers in Biology and Medicine
22 публикации, 0.36%
|
|
|
Communications in Computer and Information Science
22 публикации, 0.36%
|
|
|
Diagnostics
21 публикация, 0.34%
|
|
|
Water Research
21 публикация, 0.34%
|
|
|
Journal of Cleaner Production
21 публикация, 0.34%
|
|
|
Briefings in Bioinformatics
21 публикация, 0.34%
|
|
|
Environmental Research
20 публикаций, 0.33%
|
|
|
20
40
60
80
100
120
140
160
|
Издатели
|
200
400
600
800
1000
1200
1400
1600
1800
2000
|
|
|
Elsevier
1858 публикаций, 30.42%
|
|
|
Springer Nature
1108 публикаций, 18.14%
|
|
|
MDPI
539 публикаций, 8.83%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
423 публикации, 6.93%
|
|
|
Wiley
268 публикаций, 4.39%
|
|
|
Cold Spring Harbor Laboratory
266 публикаций, 4.36%
|
|
|
American Chemical Society (ACS)
212 публикаций, 3.47%
|
|
|
Frontiers Media S.A.
197 публикаций, 3.23%
|
|
|
Taylor & Francis
135 публикаций, 2.21%
|
|
|
Oxford University Press
118 публикаций, 1.93%
|
|
|
JMIR Publications
90 публикаций, 1.47%
|
|
|
Public Library of Science (PLoS)
84 публикации, 1.38%
|
|
|
Association for Computing Machinery (ACM)
73 публикации, 1.2%
|
|
|
SAGE
57 публикаций, 0.93%
|
|
|
Royal Society of Chemistry (RSC)
56 публикаций, 0.92%
|
|
|
Copernicus
49 публикаций, 0.8%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
42 публикации, 0.69%
|
|
|
American Geophysical Union
42 публикации, 0.69%
|
|
|
IOP Publishing
38 публикаций, 0.62%
|
|
|
Hindawi Limited
19 публикаций, 0.31%
|
|
|
American Association for the Advancement of Science (AAAS)
19 публикаций, 0.31%
|
|
|
Research Square Platform LLC
19 публикаций, 0.31%
|
|
|
AIP Publishing
18 публикаций, 0.29%
|
|
|
Social Science Electronic Publishing
18 публикаций, 0.29%
|
|
|
Cambridge University Press
14 публикаций, 0.23%
|
|
|
American Society of Clinical Oncology (ASCO)
13 публикаций, 0.21%
|
|
|
Emerald
12 публикаций, 0.2%
|
|
|
American Medical Association (AMA)
12 публикаций, 0.2%
|
|
|
American Physical Society (APS)
11 публикаций, 0.18%
|
|
|
200
400
600
800
1000
1200
1400
1600
1800
2000
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6.1k
Всего цитирований:
6107
Цитирований c 2025:
2278
(37.3%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Lundberg S. M. et al. From local explanations to global understanding with explainable AI for trees // Nature Machine Intelligence. 2020. Vol. 2. No. 1. pp. 56-67.
ГОСТ со всеми авторами (до 50)
Скопировать
Lundberg S. M., Erion G., Chen H., Degrave A., Prutkin J. M., Nair B., Katz R., Himmelfarb J., Bansal N., Lee S. From local explanations to global understanding with explainable AI for trees // Nature Machine Intelligence. 2020. Vol. 2. No. 1. pp. 56-67.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s42256-019-0138-9
UR - https://doi.org/10.1038/s42256-019-0138-9
TI - From local explanations to global understanding with explainable AI for trees
T2 - Nature Machine Intelligence
AU - Lundberg, Scott M
AU - Erion, Gabriel
AU - Chen, Hugh
AU - Degrave, Alex
AU - Prutkin, Jordan M.
AU - Nair, Bala
AU - Katz, Ronit
AU - Himmelfarb, Jonathan
AU - Bansal, Nisha
AU - Lee, Su-In
PY - 2020
DA - 2020/01/17
PB - Springer Nature
SP - 56-67
IS - 1
VL - 2
PMID - 32607472
SN - 2522-5839
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Lundberg,
author = {Scott M Lundberg and Gabriel Erion and Hugh Chen and Alex Degrave and Jordan M. Prutkin and Bala Nair and Ronit Katz and Jonathan Himmelfarb and Nisha Bansal and Su-In Lee},
title = {From local explanations to global understanding with explainable AI for trees},
journal = {Nature Machine Intelligence},
year = {2020},
volume = {2},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038/s42256-019-0138-9},
number = {1},
pages = {56--67},
doi = {10.1038/s42256-019-0138-9}
}
Цитировать
MLA
Скопировать
Lundberg, Scott M., et al. “From local explanations to global understanding with explainable AI for trees.” Nature Machine Intelligence, vol. 2, no. 1, Jan. 2020, pp. 56-67. https://doi.org/10.1038/s42256-019-0138-9.