Open Access
Open access

Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties

Nebogatikova N.A., Antonova I.V., Erohin S.V., Kvashnin D.G., Olejniczak A., Volodin V.A., Skuratov A.V., Krasheninnikov A.V., Sorokin P.B., Chernozatonskii L.A.
Тип документаJournal Article
Дата публикации2018-11-14
Название журналаNanoscale
ИздательThe Royal Society of Chemistry
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 20218.31
ISSN20403364, 20403372
General Materials Science
Краткое описание
The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (>70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm2 V-1 s-1) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV).
Пристатейные ссылки: 50
Цитируется в публикациях: 26
Graphene antidot lattice transport measurements
Mackenzie D.M., Cagliani A., Gammelgaard L., Jessen B.S., Petersen D.H., Bøggild P.
Q3 International Journal of Nanotechnology 2017 цитирований: 11
Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width
Oh J., Yoo H., Choi J., Kim J.Y., Lee D.S., Kim M.J., Lee J., Kim W.N., Grossman J.C., Park J.H., Lee S., Kim H., Son J.G.
Q1 Nano Energy 2017 цитирований: 58
Creating nanoporous graphene with swift heavy ions
Vázquez H., Åhlgren E.H., Ochedowski O., Leino A.A., Mirzayev R., Kozubek R., Lebius H., Karlušic M., Jakšic M., Krasheninnikov A.V., Kotakoski J., Schleberger M., Nordlund K., Djurabekova F.
Q1 Carbon 2017 цитирований: 40
Multiscale Simulations of Irradiation Effects of Bilayer Graphene Induced by Swift Heavy Ions
Zhao D.
Q4 Journal of Computational and Theoretical Nanoscience 2017 цитирований: 2
Bilayered graphene as a platform of nanostructures with folded edge holes
Chernozatonskii L.A., Demin V.A., Lambin P.
Q1 Physical Chemistry Chemical Physics 2016 цитирований: 13
Nanostructuring graphene by dense electronic excitation
Ochedowski O., Lehtinen O., Kaiser U., Turchanin A., Ban-d’Etat B., Lebius H., Karlušić M., Jakšić M., M Schleberger
Q1 Nanotechnology 2015 цитирований: 29
Thermal diffusivity of few-layers graphene measured by an all-optical method
Cabrera H., Mendoza D., Benítez J.L., Bautista Flores C., Alvarado S., Marín E.
Q1 Journal Physics D: Applied Physics 2015 цитирований: 22
Effect of ultrahigh stiffness of defective graphene from atomistic point of view
Kvashnin D.G., Sorokin P.B.
Q1 Journal of Physical Chemistry Letters 2015 цитирований: 26
Open Access
Open access
Strain engineering the properties of graphene and other two-dimensional crystals
Bissett M.A., Tsuji M., Ago H.
Q1 Physical Chemistry Chemical Physics 2014 цитирований: 151
Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes
Kvashnin D.G., Vancsó P., Antipina L.Y., Márk G.I., Biró L.P., Sorokin P.B., Chernozatonskii L.A.
Q1 Nano Research 2014 цитирований: 23
Open Access
Open access
Graphene quantum dots in fluorographene matrix formed by means of chemical functionalization
Nebogatikova N.A., Antonova I.V., Prinz V.Y., Timofeev V.B., Smagulova S.A.
Q1 Carbon 2014 цитирований: 22
Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite
Zeng J., Yao H.J., Zhang S.X., Zhai P.F., Duan J.L., Sun Y.M., Li G.P., Liu J.
Q3 Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 2014 цитирований: 27
Bigraphene nanomeshes: Structure, properties, and formation
Chernozatonskii L.A., Demin V.A., Artyukh A.A.
Q2 JETP Letters 2014 цитирований: 14
Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy
Antonova I.V., Nebogatikova N.A., Prinz V.Y.
Q1 Applied Physics Letters 2014 цитирований: 16
Effect of defects on the intrinsic strength and stiffness of graphene
Zandiatashbar A., Lee G., An S.J., Lee S., Mathew N., Terrones M., Hayashi T., Picu C.R., Hone J., Koratkar N.
Q1 Nature Communications 2014 цитирований: 402
Open Access
Open access
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Nebogatikova N.A. и др. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties // Nanoscale. 2018. Т. 10. № 30. С. 14499–14509.
RIS |
Цитировать

TY - JOUR

DO - 10.1039/c8nr03062f

UR - http://dx.doi.org/10.1039/C8NR03062F

TI - Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties

T2 - Nanoscale

AU - Nebogatikova, N. A.

AU - Antonova, I. V.

AU - Erohin, S. V.

AU - Kvashnin, D. G.

AU - Olejniczak, A.

AU - Volodin, V. A.

AU - Skuratov, A. V.

AU - Krasheninnikov, A. V.

AU - Sorokin, P. B.

AU - Chernozatonskii, L. A.

PY - 2018

PB - Royal Society of Chemistry (RSC)

SP - 14499-14509

IS - 30

VL - 10

SN - 2040-3364

SN - 2040-3372

ER -

BibTex |
Цитировать

@article{Nebogatikova_2018,

doi = {10.1039/c8nr03062f},

url = {https://doi.org/10.1039%2Fc8nr03062f},

year = 2018,

publisher = {Royal Society of Chemistry ({RSC})},

volume = {10},

number = {30},

pages = {14499--14509},

author = {N. A. Nebogatikova and I. V. Antonova and S. V. Erohin and D. G. Kvashnin and A. Olejniczak and V. A. Volodin and A. V. Skuratov and A. V. Krasheninnikov and P. B. Sorokin and L. A. Chernozatonskii},

title = {Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties},

journal = {Nanoscale}

}

MLA
Цитировать
Nebogatikova, N. A. et al. “Nanostructuring Few-Layer Graphene Films with Swift Heavy Ions for Electronic Application: Tuning of Electronic and Transport Properties.” Nanoscale 10.30 (2018): 14499–14509. Crossref. Web.