Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances.
A S Berestennikov
2, 3, 4, 5
,
Y. Li
6, 7, 8, 9, 10, 11
,
I. V. IORSH
1
,
A.A. Zakhidov
1, 12
,
Andrey L. Rogach
6, 7, 8, 9, 10, 11
,
Sergey V. Makarov
1, 2, 3, 4, 5
2
Department of Nanophotonics and Metamatarials
4
Saint Petersburg 197101
|
5
Russia
|
7
Department of Materials Science and Engineering
8
and Centre for Functional Photonics
10
Kowloon
|
11
Hong Kong SAR
|
Тип публикации: Journal Article
Дата публикации: 2019-03-11
scimago Q1
wos Q1
БС1
SJR: 1.245
CiteScore: 9.9
Impact factor: 5.1
ISSN: 20403364, 20403372
PubMed ID:
30907397
General Materials Science
Краткое описание
Halide perovskite nanoparticles have demonstrated pronounced quantum confinement properties for nanometer-scale sizes and strong Mie resonances for 102 nm sizes. Here we studied the intermediate sizes where the nonlocal response of the exciton affects the spectral properties of Mie modes. The mechanism of this effect is associated with the fact that excitons in nanoparticles have an additional kinetic energy that is proportional to k2, where k is the wavenumber. Therefore, they possess higher energy than in the case of static excitons. The obtained experimental and theoretical results for MAPbBr3 nanoparticles of various sizes (2-200 nm) show that for particle radii comparable with the Bohr radius of the exciton (a few nanometers in perovskites), the blue-shift of the photoluminescence, scattering, and absorption cross-section peaks related to quantum confinement should be dominating due to the weakness of Mie resonances for such small sizes. On the other hand, for larger sizes (more than 50-100 nm), the influence of Mie modes increases, and the blue shift remains despite the fact that the effect of quantum confinement becomes much weaker.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
ACS Photonics
2 публикации, 4.17%
|
|
|
Small
2 публикации, 4.17%
|
|
|
Laser and Photonics Reviews
2 публикации, 4.17%
|
|
|
APL Materials
2 публикации, 4.17%
|
|
|
ACS Applied Electronic Materials
2 публикации, 4.17%
|
|
|
Applied Physics Reviews
1 публикация, 2.08%
|
|
|
Nanophotonics
1 публикация, 2.08%
|
|
|
ACS Applied Bio Materials
1 публикация, 2.08%
|
|
|
Journal of Physics: Conference Series
1 публикация, 2.08%
|
|
|
Nanomaterials
1 публикация, 2.08%
|
|
|
AIP Conference Proceedings
1 публикация, 2.08%
|
|
|
Chemical Reviews
1 публикация, 2.08%
|
|
|
Chemistry of Materials
1 публикация, 2.08%
|
|
|
Journal of Cluster Science
1 публикация, 2.08%
|
|
|
Scientific Reports
1 публикация, 2.08%
|
|
|
International Journal of Biological Macromolecules
1 публикация, 2.08%
|
|
|
Optik
1 публикация, 2.08%
|
|
|
Acta Materialia
1 публикация, 2.08%
|
|
|
Materials Today
1 публикация, 2.08%
|
|
|
Trends in Chemistry
1 публикация, 2.08%
|
|
|
Journal of Molecular Liquids
1 публикация, 2.08%
|
|
|
Optical Materials
1 публикация, 2.08%
|
|
|
Energy Technology
1 публикация, 2.08%
|
|
|
Advanced Functional Materials
1 публикация, 2.08%
|
|
|
Chemistry - A European Journal
1 публикация, 2.08%
|
|
|
Advanced Materials Technologies
1 публикация, 2.08%
|
|
|
Advanced Photonics Research
1 публикация, 2.08%
|
|
|
Journal of Physical Chemistry C
1 публикация, 2.08%
|
|
|
Journal of the American Chemical Society
1 публикация, 2.08%
|
|
|
ACS Applied Energy Materials
1 публикация, 2.08%
|
|
|
1
2
|
Издатели
|
2
4
6
8
10
12
|
|
|
Wiley
12 публикаций, 25%
|
|
|
American Chemical Society (ACS)
11 публикаций, 22.92%
|
|
|
Elsevier
9 публикаций, 18.75%
|
|
|
AIP Publishing
4 публикации, 8.33%
|
|
|
Springer Nature
3 публикации, 6.25%
|
|
|
Royal Society of Chemistry (RSC)
3 публикации, 6.25%
|
|
|
Walter de Gruyter
1 публикация, 2.08%
|
|
|
IOP Publishing
1 публикация, 2.08%
|
|
|
MDPI
1 публикация, 2.08%
|
|
|
Pleiades Publishing
1 публикация, 2.08%
|
|
|
World Scientific
1 публикация, 2.08%
|
|
|
Optica Publishing Group
1 публикация, 2.08%
|
|
|
2
4
6
8
10
12
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
48
Всего цитирований:
48
Цитирований c 2024:
8
(16.66%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Berestennikov A. S. et al. Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. // Nanoscale. 2019. Vol. 11. No. 14. pp. 6747-6754.
ГОСТ со всеми авторами (до 50)
Скопировать
Berestennikov A. S., Berestennikov A. S., Li Y., IORSH I. V., Zakhidov A., Rogach A. L., Makarov S. V. Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. // Nanoscale. 2019. Vol. 11. No. 14. pp. 6747-6754.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1039/C8NR09837A
UR - https://xlink.rsc.org/?DOI=C8NR09837A
TI - Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances.
T2 - Nanoscale
AU - Berestennikov, Alexander S
AU - Berestennikov, A S
AU - Li, Y.
AU - IORSH, I. V.
AU - Zakhidov, A.A.
AU - Rogach, Andrey L.
AU - Makarov, Sergey V.
PY - 2019
DA - 2019/03/11
PB - Royal Society of Chemistry (RSC)
SP - 6747-6754
IS - 14
VL - 11
PMID - 30907397
SN - 2040-3364
SN - 2040-3372
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Berestennikov,
author = {Alexander S Berestennikov and A S Berestennikov and Y. Li and I. V. IORSH and A.A. Zakhidov and Andrey L. Rogach and Sergey V. Makarov},
title = {Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances.},
journal = {Nanoscale},
year = {2019},
volume = {11},
publisher = {Royal Society of Chemistry (RSC)},
month = {mar},
url = {https://xlink.rsc.org/?DOI=C8NR09837A},
number = {14},
pages = {6747--6754},
doi = {10.1039/C8NR09837A}
}
Цитировать
MLA
Скопировать
Berestennikov, A. S., et al. “Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances..” Nanoscale, vol. 11, no. 14, Mar. 2019, pp. 6747-6754. https://xlink.rsc.org/?DOI=C8NR09837A.