volume 22 issue 48 pages 28183-28190

Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features

Ilya E. Kolesnikov 1, 2, 3, 4, 5, 6, 7
M A Kurochkin 1, 3, 4, 5
Elena V Afanaseva 4, 5, 8, 9
Daria V Mamonova 1
D V Mamonova 3, 4, 5
Alexey A Kalinichev 1, 3, 4, 5
E Yu Kolesnikov 5, 10, 11, 12
E. Lähderanta 2, 6, 7, 13
2
 
LUT University, Skinnarilankatu 34, Lappeenranta, Finland
4
 
St. Petersburg
5
 
Russia
6
 
LUT University
7
 
Lappeenranta
10
 
Volga State University of Technology, Lenin sqr. 3, Yoshkar-Ola, Russia
11
 
Volga State University of Technology
12
 
Yoshkar-Ola
13
 
FINLAND
Publication typeJournal Article
Publication date2020-10-01
scimago Q2
wos Q2
SJR0.698
CiteScore5.3
Impact factor2.9
ISSN14639076, 14639084
PubMed ID:  33291123
Physical and Theoretical Chemistry
General Physics and Astronomy
Abstract
Accurate thermal sensing with good spatial resolution is currently required in a variety of scientific and technological areas. Luminescence nanothermometry has shown competitive superiority in contactless temperature sensing, especially at the nanoscale. To broaden the use of such thermometers, development of a novel sensor type with high sensitivity and resolution is highly demanded. Herein, we report single-phase Ln3+-doped YVO4 nanophosphors synthesized using a modified Pechini method as multimode optical thermometers for wide-range temperature probing (299-466 K). The observed temperature-induced red shift of the charge transfer band was utilized to provide thermal sensing. Temperature sensing was based on the luminescence intensity ratio using emission intensities obtained upon charge transfer and direct lanthanide excitation, the spectral position of the charge transfer band and its bandwidth. The suggested probing strategies provided a high relative thermal sensitivity (up to 3.09% K-1) and a precise temperature resolution (up to 0.1 K). The obtained results can be useful for the design of novel contactless luminescence thermometers.
Found 
Found 

Top-30

Journals

1
2
3
4
Journal of Materials Chemistry C
4 publications, 10.53%
Ceramics International
3 publications, 7.89%
Journal of Alloys and Compounds
3 publications, 7.89%
Sensors and Actuators, A: Physical
2 publications, 5.26%
Nanotechnology
2 publications, 5.26%
Physical Chemistry Chemical Physics
2 publications, 5.26%
Dalton Transactions
2 publications, 5.26%
Journal of the American Ceramic Society
2 publications, 5.26%
Physica B: Condensed Matter
1 publication, 2.63%
Advanced Photonics Research
1 publication, 2.63%
Journal of Physical Chemistry C
1 publication, 2.63%
RSC Advances
1 publication, 2.63%
Inorganic Chemistry Frontiers
1 publication, 2.63%
Inorganic Materials
1 publication, 2.63%
Optics Letters
1 publication, 2.63%
Journal of Rare Earths
1 publication, 2.63%
Nanomaterials
1 publication, 2.63%
Optical Materials: X
1 publication, 2.63%
Journal of Luminescence
1 publication, 2.63%
Materials Advances
1 publication, 2.63%
Journal of Molecular Structure
1 publication, 2.63%
AIP Advances
1 publication, 2.63%
Journal of the American Chemical Society
1 publication, 2.63%
Optical Materials
1 publication, 2.63%
Advanced Materials Interfaces
1 publication, 2.63%
1
2
3
4

Publishers

2
4
6
8
10
12
14
Elsevier
14 publications, 36.84%
Royal Society of Chemistry (RSC)
11 publications, 28.95%
Wiley
4 publications, 10.53%
IOP Publishing
2 publications, 5.26%
American Chemical Society (ACS)
2 publications, 5.26%
Pleiades Publishing
1 publication, 2.63%
Optica Publishing Group
1 publication, 2.63%
MDPI
1 publication, 2.63%
AIP Publishing
1 publication, 2.63%
2
4
6
8
10
12
14
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
38
Share
Cite this
GOST |
Cite this
GOST Copy
Kolesnikov I. E. et al. Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features // Physical Chemistry Chemical Physics. 2020. Vol. 22. No. 48. pp. 28183-28190.
GOST all authors (up to 50) Copy
Kolesnikov I. E., Kurochkin M. A., Afanaseva E. V., Mamonova D. V., Mamonova D. V., Kalinichev A. A., Kolesnikov E. Yu., Lähderanta E. Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features // Physical Chemistry Chemical Physics. 2020. Vol. 22. No. 48. pp. 28183-28190.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1039/D0CP04048G
UR - https://xlink.rsc.org/?DOI=D0CP04048G
TI - Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features
T2 - Physical Chemistry Chemical Physics
AU - Kolesnikov, Ilya E.
AU - Kurochkin, M A
AU - Afanaseva, Elena V
AU - Mamonova, Daria V
AU - Mamonova, D V
AU - Kalinichev, Alexey A
AU - Kolesnikov, E Yu
AU - Lähderanta, E.
PY - 2020
DA - 2020/10/01
PB - Royal Society of Chemistry (RSC)
SP - 28183-28190
IS - 48
VL - 22
PMID - 33291123
SN - 1463-9076
SN - 1463-9084
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Kolesnikov,
author = {Ilya E. Kolesnikov and M A Kurochkin and Elena V Afanaseva and Daria V Mamonova and D V Mamonova and Alexey A Kalinichev and E Yu Kolesnikov and E. Lähderanta},
title = {Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features},
journal = {Physical Chemistry Chemical Physics},
year = {2020},
volume = {22},
publisher = {Royal Society of Chemistry (RSC)},
month = {oct},
url = {https://xlink.rsc.org/?DOI=D0CP04048G},
number = {48},
pages = {28183--28190},
doi = {10.1039/D0CP04048G}
}
MLA
Cite this
MLA Copy
Kolesnikov, Ilya E., et al. “Multimode high-sensitivity optical YVO4:Ln3+ nanothermometers (Ln3+ = Eu3+, Dy3+, Sm3+) using charge transfer band features.” Physical Chemistry Chemical Physics, vol. 22, no. 48, Oct. 2020, pp. 28183-28190. https://xlink.rsc.org/?DOI=D0CP04048G.