The 2020 UV emitter roadmap
Hiroshi Amano
1
,
Ramon Collazo
2
,
Carlo De Santi
3
,
S. Einfeldt
4, 5, 6
,
Mitsuru Funato
7
,
J Glaab
4, 5, 6
,
S. Hagedorn
4, 5, 6
,
Akira Hirano
8
,
Hideki Hirayama
9
,
Ryota Ishii
7
,
Yukio Kashima
9
,
Yoichi Kawakami
7
,
Ronny Kirste
2
,
Michael Kneissl
10, 11
,
R. Martin
12
,
Frank Mehnke
13
,
Matteo Meneghini
3
,
Abdallah Ougazzaden
14
,
Peter J Parbrook
15
,
Siddharth Rajan
16
,
Pramod Reddy
17
,
Friedhard Römer
18
,
J. Ruschel
4, 5, 6
,
Biplab Sarkar
19, 20
,
Ferdinand Scholz
21
,
Leo Schowalter
22
,
Philip T. Shields
23
,
Zlatko Sitar
2
,
Luca Sulmoni
11
,
Tao Wang
24
,
Tim Wernicke
11
,
Markus Weyers
4, 5, 6
,
Bernd Witzigmann
18
,
Yuh-Renn Wu
25
,
Thomas Wunderer
26
,
Yuewei Zhang
27
3
6
Gustav-Kirchhoff-Str. 4 12489 Berlin Germany
|
8
UV Craftory Co., Ltd., Nagoya 464-0015, Japan
|
14
Georgia Institute of Technology, School of Electrical and Computer Engineering, Georgia Tech-CNRS, UMI 2958 57070, Metz, France
|
17
Adroit Materials, Inc., 2054 Kildaire Farm Rd, Suite 205, Cary, NC 27518, United States of America
|
22
Asahi Kasei Corporation, Fuji 416-8501, Japan
|
26
Electronics Materials and Devices Laboratory, PARC, a Xerox Company, 3333 Coyote Hill Road, Palo Alto, CA 94304, United States of America
|
Publication type: Journal Article
Publication date: 2020-09-16
scimago Q1
wos Q2
SJR: 0.650
CiteScore: 6.4
Impact factor: 3.2
ISSN: 00223727, 13616463
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Condensed Matter Physics
Acoustics and Ultrasonics
Abstract
Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
5
10
15
20
25
30
35
40
|
|
|
Applied Physics Letters
39 publications, 8.52%
|
|
|
Physica Status Solidi (A) Applications and Materials Science
20 publications, 4.37%
|
|
|
Applied Physics Express
18 publications, 3.93%
|
|
|
Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
13 publications, 2.84%
|
|
|
Optics Express
13 publications, 2.84%
|
|
|
Journal of Applied Physics
12 publications, 2.62%
|
|
|
Journal Physics D: Applied Physics
11 publications, 2.4%
|
|
|
Semiconductor Science and Technology
10 publications, 2.18%
|
|
|
Physica Status Solidi (B): Basic Research
10 publications, 2.18%
|
|
|
IEEE Transactions on Electron Devices
9 publications, 1.97%
|
|
|
Crystals
8 publications, 1.75%
|
|
|
Journal of Crystal Growth
8 publications, 1.75%
|
|
|
Crystal Growth and Design
8 publications, 1.75%
|
|
|
IEEE Photonics Journal
8 publications, 1.75%
|
|
|
ACS Photonics
7 publications, 1.53%
|
|
|
AIP Advances
7 publications, 1.53%
|
|
|
Physica Status Solidi - Rapid Research Letters
7 publications, 1.53%
|
|
|
Journal of Vacuum Science and Technology B
6 publications, 1.31%
|
|
|
Scientific Reports
6 publications, 1.31%
|
|
|
Materials Science in Semiconductor Processing
6 publications, 1.31%
|
|
|
Optics Letters
6 publications, 1.31%
|
|
|
ECS Journal of Solid State Science and Technology
5 publications, 1.09%
|
|
|
Nanomaterials
5 publications, 1.09%
|
|
|
Journal of Electronic Materials
4 publications, 0.87%
|
|
|
ACS applied materials & interfaces
4 publications, 0.87%
|
|
|
Electronics (Switzerland)
4 publications, 0.87%
|
|
|
Photonics
4 publications, 0.87%
|
|
|
Advanced Electronic Materials
4 publications, 0.87%
|
|
|
IEEE Photonics Technology Letters
4 publications, 0.87%
|
|
|
5
10
15
20
25
30
35
40
|
Publishers
|
10
20
30
40
50
60
70
|
|
|
AIP Publishing
66 publications, 14.41%
|
|
|
Elsevier
56 publications, 12.23%
|
|
|
Wiley
53 publications, 11.57%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
51 publications, 11.14%
|
|
|
IOP Publishing
43 publications, 9.39%
|
|
|
American Chemical Society (ACS)
30 publications, 6.55%
|
|
|
MDPI
30 publications, 6.55%
|
|
|
Optica Publishing Group
28 publications, 6.11%
|
|
|
Springer Nature
26 publications, 5.68%
|
|
|
Japan Society of Applied Physics
23 publications, 5.02%
|
|
|
American Vacuum Society
8 publications, 1.75%
|
|
|
Royal Society of Chemistry (RSC)
7 publications, 1.53%
|
|
|
EDP Sciences
5 publications, 1.09%
|
|
|
SPIE-Intl Soc Optical Eng
5 publications, 1.09%
|
|
|
The Electrochemical Society
5 publications, 1.09%
|
|
|
American Physical Society (APS)
5 publications, 1.09%
|
|
|
Oxford University Press
2 publications, 0.44%
|
|
|
International Union of Crystallography (IUCr)
2 publications, 0.44%
|
|
|
ifmbe proceedings
1 publication, 0.22%
|
|
|
American Institute of Aeronautics and Astronautics (AIAA)
1 publication, 0.22%
|
|
|
Institution of Engineering and Technology (IET)
1 publication, 0.22%
|
|
|
Walter de Gruyter
1 publication, 0.22%
|
|
|
Mary Ann Liebert
1 publication, 0.22%
|
|
|
Emerald
1 publication, 0.22%
|
|
|
Shanghai Institute of Optics and Fine Mechanics
1 publication, 0.22%
|
|
|
10
20
30
40
50
60
70
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
458
Total citations:
458
Citations from 2024:
197
(43.01%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Amano H. et al. The 2020 UV emitter roadmap // Journal Physics D: Applied Physics. 2020. Vol. 53. No. 50. p. 503001.
GOST all authors (up to 50)
Copy
Amano H., Collazo R., Santi C. D., Einfeldt S., Funato M., Glaab J., Hagedorn S., Hirano A., Hirayama H., Ishii R., Kashima Y., Kawakami Y., Kirste R., Kneissl M., Martin R., Mehnke F., Meneghini M., Ougazzaden A., Parbrook P. J., Rajan S., Reddy P., Römer F., Ruschel J., Sarkar B., Scholz F., Schowalter L., Shields P. T., Sitar Z., Sulmoni L., Wang T., Wernicke T., Weyers M., Witzigmann B., Wu Y., Wunderer T., Zhang Y. The 2020 UV emitter roadmap // Journal Physics D: Applied Physics. 2020. Vol. 53. No. 50. p. 503001.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1088/1361-6463/aba64c
UR - https://doi.org/10.1088/1361-6463/aba64c
TI - The 2020 UV emitter roadmap
T2 - Journal Physics D: Applied Physics
AU - Amano, Hiroshi
AU - Collazo, Ramon
AU - Santi, Carlo De
AU - Einfeldt, S.
AU - Funato, Mitsuru
AU - Glaab, J
AU - Hagedorn, S.
AU - Hirano, Akira
AU - Hirayama, Hideki
AU - Ishii, Ryota
AU - Kashima, Yukio
AU - Kawakami, Yoichi
AU - Kirste, Ronny
AU - Kneissl, Michael
AU - Martin, R.
AU - Mehnke, Frank
AU - Meneghini, Matteo
AU - Ougazzaden, Abdallah
AU - Parbrook, Peter J
AU - Rajan, Siddharth
AU - Reddy, Pramod
AU - Römer, Friedhard
AU - Ruschel, J.
AU - Sarkar, Biplab
AU - Scholz, Ferdinand
AU - Schowalter, Leo
AU - Shields, Philip T.
AU - Sitar, Zlatko
AU - Sulmoni, Luca
AU - Wang, Tao
AU - Wernicke, Tim
AU - Weyers, Markus
AU - Witzigmann, Bernd
AU - Wu, Yuh-Renn
AU - Wunderer, Thomas
AU - Zhang, Yuewei
PY - 2020
DA - 2020/09/16
PB - IOP Publishing
SP - 503001
IS - 50
VL - 53
SN - 0022-3727
SN - 1361-6463
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2020_Amano,
author = {Hiroshi Amano and Ramon Collazo and Carlo De Santi and S. Einfeldt and Mitsuru Funato and J Glaab and S. Hagedorn and Akira Hirano and Hideki Hirayama and Ryota Ishii and Yukio Kashima and Yoichi Kawakami and Ronny Kirste and Michael Kneissl and R. Martin and Frank Mehnke and Matteo Meneghini and Abdallah Ougazzaden and Peter J Parbrook and Siddharth Rajan and Pramod Reddy and Friedhard Römer and J. Ruschel and Biplab Sarkar and Ferdinand Scholz and Leo Schowalter and Philip T. Shields and Zlatko Sitar and Luca Sulmoni and Tao Wang and Tim Wernicke and Markus Weyers and Bernd Witzigmann and Yuh-Renn Wu and Thomas Wunderer and Yuewei Zhang},
title = {The 2020 UV emitter roadmap},
journal = {Journal Physics D: Applied Physics},
year = {2020},
volume = {53},
publisher = {IOP Publishing},
month = {sep},
url = {https://doi.org/10.1088/1361-6463/aba64c},
number = {50},
pages = {503001},
doi = {10.1088/1361-6463/aba64c}
}
Cite this
MLA
Copy
Amano, Hiroshi, et al. “The 2020 UV emitter roadmap.” Journal Physics D: Applied Physics, vol. 53, no. 50, Sep. 2020, p. 503001. https://doi.org/10.1088/1361-6463/aba64c.