Superconductor Science and Technology, volume 34, issue 11, pages 115022
Selfconsistent 3D model of SN-N-NS Josephson junctions
3
Publication type: Journal Article
Publication date: 2021-10-18
scimago Q1
SJR: 1.056
CiteScore: 6.8
Impact factor: 3.7
ISSN: 09532048, 13616668
Materials Chemistry
Metals and Alloys
Ceramics and Composites
Condensed Matter Physics
Electrical and Electronic Engineering
Abstract
We develop a quantitative model describing the distribution of the supercurrent density and density of states in SN-N-NS type Josephson junctions in three dimensions (S is a superconductor and N is a normal metal). The model is based on the self-consistent solution of the quasiclassical Usadel equations using the finite element method. We investigate the influence of the proximity effect on the properties of the junction as a function of phase difference across the structure for various spatial dimensions and material parameters of S, N metals. The results are consistent with analytical solutions in the thin N layer limit and show consistent behavior for a large range of junction parameters. The results may serve to design nanoscale Josephson junctions for use in superconducting digital circuits.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.