Carcinogenesis, volume 41, issue 12, pages 1735-1745

Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells.

Sophie Haumann 1, 2
Julia Boix 1
J Knuever 1, 3
Angela Bieling 1
Anton Vila Sanjurjo 4
Joanna Elson 5, 6
E. L. Blakely 7
Peggy Murphy 7
Nicole Riet 8
Hinrich Abken 8, 9, 10
H. Kashkar 9, 11, 12
Hue-Tran Hornig-Do 1
Rudolf J. Wiesner 1, 9, 12
Show full list: 13 authors
Publication typeJournal Article
Publication date2020-04-07
Journal: Carcinogenesis
scimago Q1
wos Q2
SJR1.074
CiteScore9.2
Impact factor3.3
ISSN01433334, 14602180
Cancer Research
General Medicine
Abstract
Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma cell lines (cHL) harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knock-down of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.
Urbanczyk S., Stein M., Schuh W., Jäck H., Mougiakakos D., Mielenz D.
2018-07-27 citations by CoLab: 25 PDF Abstract  
The most important feature of humoral immunity is the adaptation of the diversity of newly generated B cell receptors, that is, the antigen receptor repertoire, to the body’s own and foreign structures. This includes the transient propagation of B progenitor cells and B cells, which possess receptors that are positively selected via anabolic signalling pathways under highly competitive conditions. The metabolic regulation of early B-cell development thus has important consequences for the expansion of normal or malignant pre-B cell clones. In addition, cellular senescence programs based on the expression of B cell identity factors, such as Pax5, act to prevent excessive proliferation and cellular deviation. Here, we review the basic mechanisms underlying the regulation of glycolysis and oxidative phosphorylation during early B cell development in bone marrow. We focus on the regulation of glycolysis and mitochondrial oxidative phosphorylation at the transition from non-transformed pro- to pre-B cells and discuss some ongoing issues. We introduce Swiprosin-2/EFhd1 as a potential regulator of glycolysis in pro-B cells that has also been linked to Ca2+-mediated mitoflashes. Mitoflashes are bioenergetic mitochondrial events that control mitochondrial metabolism and signalling in both healthy and disease states. We discuss how Ca2+ fluctuations in pro- and pre-B cells may translate into mitoflashes in early B cells and speculate about the consequences of these changes.
Cameron A.R., Logie L., Patel K., Erhardt S., Bacon S., Middleton P., Harthill J., Forteath C., Coats J.T., Kerr C., Curry H., Stewart D., Sakamoto K., Repiščák P., Paterson M.J., et. al.
Redox Biology scimago Q1 wos Q1 Open Access
2018-04-01 citations by CoLab: 120 Abstract  
Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled.
Gardeitchik T., Mohamed M., Ruzzenente B., Karall D., Guerrero-Castillo S., Dalloyaux D., van den Brand M., van Kraaij S., van Asbeck E., Assouline Z., Rio M., de Lonlay P., Scholl-Buergi S., Wolthuis D.F., Hoischen A., et. al.
2018-04-01 citations by CoLab: 68 Abstract  
Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.
Lake N.J., Webb B.D., Stroud D.A., Richman T.R., Ruzzenente B., Compton A.G., Mountford H.S., Pulman J., Zangarelli C., Rio M., Boddaert N., Assouline Z., Sherpa M.D., Schadt E.E., Houten S.M., et. al.
2017-08-03 citations by CoLab: 82 Abstract  
The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.
Stein M., Dütting S., Mougiakakos D., Bösl M., Fritsch K., Reimer D., Urbanczyk S., Steinmetz T., Schuh W., Bozec A., Winkler T.H., Jäck H., Mielenz D.
Cell Death and Differentiation scimago Q1 wos Q1
2017-05-19 citations by CoLab: 59 Abstract  
B-cell development in the bone marrow comprises proliferative and resting phases in different niches. We asked whether B-cell metabolism relates to these changes. Compared to pro B and small pre B cells, large pre B cells revealed the highest glucose uptake and ROS but not mitochondrial mass, whereas small pre B cells exhibited the lowest mitochondrial membrane potential. Small pre B cells from Rag1−/−;33.C9 μ heavy chain knock-in mice revealed decreased glycolysis (ECAR) and mitochondrial spare capacity compared to pro B cells from Rag1−/− mice. We were interested in the step regulating this metabolic switch from pro to pre B cells and uncovered that Swiprosin-2/EFhd1, a Ca2+-binding protein of the inner mitochondrial membrane involved in Ca2+-induced mitoflashes, is expressed in pro B cells, but downregulated by surface pre B-cell receptor expression. Knockdown and knockout of EFhd1 in 38B9 pro B cells decreased the oxidative phosphorylation/glycolysis (OCR/ECAR) ratio by increasing glycolysis, glycolytic capacity and reserve. Prolonged expression of EFhd1 in EFhd1 transgenic mice beyond the pro B cell stage increased expression of the mitochondrial co-activator PGC-1α in primary pre B cells, but reduced mitochondrial ATP production at the pro to pre B cell transition in IL-7 cultures. Transgenic EFhd1 expression caused a B-cell intrinsic developmental disadvantage for pro and pre B cells. Hence, coordinated expression of EFhd1 in pro B cells and by the pre BCR regulates metabolic changes and pro/pre B-cell development.
Zhang J., Pavlova N.N., Thompson C.B.
EMBO Journal scimago Q1 wos Q1 Open Access
2017-04-18 citations by CoLab: 480 Abstract  
Biochemistry textbooks and cell culture experiments seem to be telling us two different things about the significance of external glutamine supply for mammalian cell growth and proliferation. Despite the fact that glutamine is a nonessential amino acid that can be synthesized by cells from glucose‐derived carbons and amino acid‐derived ammonia, most mammalian cells in tissue culture cannot proliferate or even survive in an environment that does not contain millimolar levels of glutamine. Not only are the levels of glutamine in standard tissue culture media at least ten‐fold higher than other amino acids, but glutamine is also the most abundant amino acid in the human bloodstream, where it is assiduously maintained at approximately 0.5 mM through a combination of dietary uptake, de novo synthesis, and muscle protein catabolism. The complex metabolic logic of the proliferating cancer cells' appetite for glutamine—which goes far beyond satisfying their protein synthesis requirements—has only recently come into focus. In this review, we examine the diversity of biosynthetic and regulatory uses of glutamine and their role in proliferation, stress resistance, and cellular identity, as well as discuss the mechanisms that cells utilize in order to adapt to glutamine limitation.
Venter M., Malan L., van Dyk E., Elson J.L., van der Westhuizen F.H.
2017-03-01 citations by CoLab: 18 Abstract  
Mitochondrial DNA (mtDNA) variation has been implicated in many common complex diseases, but inconsistent and contradicting results are common. Here we introduce a novel mutational load hypothesis, which also considers the collective effect of mainly rare variants, utilising the MutPred Program. We apply this new methodology to investigate the possible role of mtDNA in two cardiovascular disease (CVD) phenotypes (hypertension and hyperglycaemia), within a two-population cohort (n = 363; mean age 45 ± 9 yrs). Very few studies have looked at African mtDNA variation in the context of complex disease, and none using complete sequence data in a well-phenotyped cohort. As such, our study will also extend our knowledge of African mtDNA variation, with complete sequences of Southern Africans being especially under-represented. The cohort showed prevalence rates for hypertension (58.6%) and prediabetes (44.8%). We could not identify a statistically significant role for mtDNA variation in association with hypertension or hyperglycaemia in our cohort. However, we are of the opinion that the method described will find wide application in the field, being especially useful for cohorts from multiple locations or with a variety of mtDNA lineages, where the traditional haplogroup association method has been particularly likely to generate spurious results in the context of association with common complex disease.
Guerrero-Castillo S., Baertling F., Kownatzki D., Wessels H.J., Arnold S., Brandt U., Nijtmans L.
Cell Metabolism scimago Q1 wos Q1
2017-01-01 citations by CoLab: 355 Abstract  
Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex.
Richter-Dennerlein R., Oeljeklaus S., Lorenzi I., Ronsör C., Bareth B., Schendzielorz A.B., Wang C., Warscheid B., Rehling P., Dennerlein S.
Cell scimago Q1 wos Q1
2016-10-01 citations by CoLab: 177
Birkenmeier K., Moll K., Newrzela S., Hartmann S., Dröse S., Hansmann M.
Oncotarget scimago Q2 Open Access
2016-06-27 citations by CoLab: 16 Abstract  
As current classical Hodgkin lymphoma (cHL) treatment strategies have pronounced side-effects, specific inhibition of signaling pathways may offer novel strategies in cHL therapy. Basal autophagy, a regulated catabolic pathway to degrade cell's own components, is in cancer linked with both, tumor suppression or promotion. The finding that basal autophagy enhances tumor cell survival would thus lead to immediately testable strategies for novel therapies. Thus, we studied its contribution in cHL.We found constitutive activation of autophagy in cHL cell lines and primary tissue. The expression of key autophagy-relevant proteins (e.g. Beclin-1, ULK1) and LC3 processing was increased in cHL cells, even in lymphoma cases. Consistently, cHL cells exhibited elevated numbers of autophagic vacuoles and intact autophagic flux. Autophagy inhibition with chloroquine or inactivation of ATG5 induced apoptosis and reduced proliferation of cHL cells. Chloroquine-mediated inhibition of basal autophagy significantly impaired HL growth in-vivo in NOD SCID γc-/- (NSG) mice. We found that basal autophagy plays a pivotal role in sustaining mitochondrial function.We conclude that cHL cells require basal autophagy for growth, survival and sustained metabolism making them sensitive to autophagy inhibition. This suggests basal autophagy as useful target for new strategies in cHL treatment.
Birkenmeier K., Dröse S., Wittig I., Winkelmann R., Käfer V., Döring C., Hartmann S., Wenz T., Reichert A.S., Brandt U., Hansmann M.
International Journal of Cancer scimago Q1 wos Q1
2016-01-18 citations by CoLab: 41 Abstract  
The metabolic properties of lymphomas derived from germinal center (GC) B cells have important implications for therapeutic strategies. In this study, we have compared metabolic features of Hodgkin-Reed-Sternberg (HRS) cells, the tumor cells of classical Hodgkin's lymphoma (cHL), one of the most frequent (post-)GC-derived B-cell lymphomas, with their normal GC B cell counterparts. We found that the ratio of oxidative to nonoxidative energy conversion was clearly shifted toward oxidative phosphorylation (OXPHOS)-linked ATP synthesis in HRS cells as compared to GC B cells. Mitochondrial mass, the expression of numerous key proteins of oxidative metabolism and markers of mitochondrial biogenesis were markedly upregulated in cHL cell lines and in primary cHL cases. NFkappaB promoted this shift to OXPHOS. Functional analysis indicated that both cell growth and viability of HRS cells depended on OXPHOS. The high rates of OXPHOS correlated with an almost complete lack of lactate production in HRS cells not observed in other GC B-cell lymphoma cell lines. Overall, we conclude that OXPHOS dominates energy conversion in HRS cells, while nonoxidative ATP production plays a subordinate role. Our results suggest that OXPHOS could be a new therapeutic target and may provide an avenue toward new treatment strategies in cHL.
Lussey-Lepoutre C., Hollinshead K.E., Ludwig C., Menara M., Morin A., Castro-Vega L., Parker S.J., Janin M., Martinelli C., Ottolenghi C., Metallo C., Gimenez-Roqueplo A., Favier J., Tennant D.A.
Nature Communications scimago Q1 wos Q1 Open Access
2015-11-02 citations by CoLab: 184 PDF Abstract  
The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically. Evidence suggests that the TCA cycle enzyme complex succinate dehydrogenase (SDH) may be dispensable for cell proliferation in some cancer cells. Here the authors show that SDH deficient cells become dependent on the mitochondrial enzyme pyruvate carboxylase for aspartate production and proliferation.
Elson J.L., Smith P.M., Greaves L.C., Lightowlers R.N., Chrzanowska-Lightowlers Z.M., Taylor R.W., Vila-Sanjurjo A.
Mitochondrion scimago Q2 wos Q1
2015-11-01 citations by CoLab: 31 Abstract  
Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health.
Huebbers C.U., Adam A.C., Preuss S.F., Schiffer T., Schilder S., Guntinas-Lichius O., Schmidt M., Klussmann J.P., Wiesner R.J.
Oncotarget scimago Q2 Open Access
2015-10-06 citations by CoLab: 18 Abstract  
A hallmark of solid tumors is the consumption of large amounts of glucose and production of lactate, also known as Warburg-like metabolism. This metabolic phenotype is typical for aggressive tumor growth, and can be visualized by 18F-fluorodeoxyglucose (18F-FDG) uptake detected by positron emission tomography (PET). High 18F-FDG uptake inversely correlates with survival and goes along with reduced expression of the catalytic beta-subunit of the H+-ATP synthase (ß-F1-ATPase) in several tumor entities analyzed so far.For this study we characterized a series of 15 head and neck squamous cell carcinoma (HNSCC) by (i) determining 18F-FDG-uptake; (ii) quantitative expression analysis of ß-F1-ATPase (Complex V), NDUF-S1 (Complex I) and COX1 (Complex IV) of the mitochondrial electron transport chain (ETC), as well as Hsp60 (mitochondrial mass) and GAPDH (glycolysis) in tumor cells; (iii) sequencing of the mtDNA of representative tumor samples.Whereas high 18F-FDG-uptake also correlates with poor prognosis in HNSCC, it surprisingly is accompanied by high levels of ß-F1-ATPase, but not by any of the other analyzed proteins.In conclusion, we here describe a completely new phenotype of metabolic adaptation possibly enabling those tumors with highest levels of ß-F1-ATPase to rapidly proliferate even in hypoxic zones, which are typical for HNSCC.
Stewart J.B., Alaei-Mahabadi B., Sabarinathan R., Samuelsson T., Gorodkin J., Gustafsson C.M., Larsson E.
PLoS Genetics scimago Q1 wos Q1 Open Access
2015-06-30 citations by CoLab: 101 PDF Abstract  
Somatic mutations in the nuclear genome are required for tumor formation, but the functional consequences of somatic mitochondrial DNA (mtDNA) mutations are less understood. Here we identify somatic mtDNA mutations across 527 tumors and 14 cancer types, using an approach that takes advantage of evidence from both genomic and transcriptomic sequencing. We find that there is selective pressure against deleterious coding mutations, supporting that functional mitochondria are required in tumor cells, and also observe a strong mutational strand bias, compatible with endogenous replication-coupled errors as the major source of mutations. Interestingly, while allelic ratios in general were consistent in RNA compared to DNA, some mutations in tRNAs displayed strong allelic imbalances caused by accumulation of unprocessed tRNA precursors. The effect was explained by altered secondary structure, demonstrating that correct tRNA folding is a major determinant for processing of polycistronic mitochondrial transcripts. Additionally, the data suggest that tRNA clusters are preferably processed in the 3′ to 5′ direction. Our study gives insights into mtDNA function in cancer and answers questions regarding mitochondrial tRNA biogenesis that are difficult to address in controlled experimental systems.
Fedotova E.I., Berezhnov A.V., Popov D.Y., Shitikova E.Y., Vinokurov A.Y.
2025-01-25 citations by CoLab: 0 PDF Abstract  
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Pecina P., Čunátová K., Kaplanová V., Puertas-Frias G., Šilhavý J., Tauchmannová K., Vrbacký M., Čajka T., Gahura O., Hlaváčková M., Stránecký V., Kmoch S., Pravenec M., Houštěk J., Mráček T., et. al.
Communications Biology scimago Q1 wos Q1 Open Access
2024-09-11 citations by CoLab: 1 PDF Abstract  
AbstractMetabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.
Bierling T.E., Gumann A., Ottmann S.R., Schulz S.R., Weckwerth L., Thomas J., Gessner A., Wichert M., Kuwert F., Rost F., Hauke M., Freudenreich T., Mielenz D., Jäck H., Pracht K.
Cell Reports scimago Q1 wos Q1 Open Access
2024-02-09 citations by CoLab: 9 Abstract  
Summary Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Boykov I.N., Montgomery M.M., Hagen J.T., Aruleba R.T., McLaughlin K.L., Coalson H.S., Nelson M.A., Pereyra A.S., Ellis J.M., Zeczycki T.N., Vohra N.A., Tan S., Cabot M.C., Fisher-Wellman K.H.
Scientific Reports scimago Q1 wos Q1 Open Access
2023-10-05 citations by CoLab: 4 PDF Abstract  
AbstractTargeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.
Wang S., Tseng L., Lee H.
Journal of Biomedical Science scimago Q1 wos Q1 Open Access
2023-07-31 citations by CoLab: 56 PDF Abstract  
AbstractDysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the “Warburg effect,” in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction–mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Vila-Sanjurjo A., Mallo N., Atkins J.F., Elson J.L., Smith P.M.
Frontiers in Physiology scimago Q2 wos Q2 Open Access
2023-06-30 citations by CoLab: 3 PDF Abstract  
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Boykov I.N., Montgomery M.M., Hagen J.T., Aruleba R.T., McLaughlin K.L., Coalson H.S., Nelson M.A., Pereyra A.S., Ellis J.M., Zeczycki T.N., Vohra N.A., Tan S., Cabot M.C., Fisher-Wellman K.H.
2023-06-04 citations by CoLab: 1 Abstract  
ABSTRACTTargeting mitochondrial oxidative phosphorylation (OXPHOS) to combat cancer is increasingly being investigated using a variety of small molecule inhibitors. Clinical success for these inhibitors has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Although mitochondrial oxidative metabolism is essential for malignant growth, mitochondria OXPHOS is also essential to the physiology of all organs, including high-energy-demand organs like the heart. In comparing tumor OXPHOS reliance to these preeminent oxidative organs it is unclear if a therapeutic window for targeting mitochondrial OXPHOS in cancer exists. To address this gap in knowledge, mitochondrial OXPHOS was comprehensively evaluated across various murine tumors and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were consistently lower across distinct tumor types. Operating on the assumption that intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across tumor types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given tumor type.
Khotina V.A., Vinokurov A.Y., Bagheri Ekta M., Sukhorukov V.N., Orekhov A.N.
Biomedicines scimago Q1 wos Q1 Open Access
2023-02-12 citations by CoLab: 8 PDF Abstract  
Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.
Urbanczyk S., Baris O.R., Hofmann J., Taudte R.V., Guegen N., Golombek F., Castiglione K., Meng X., Bozec A., Thomas J., Weckwerth L., Mougiakakos D., Schulz S.R., Schuh W., Schlötzer-Schrehardt U., et. al.
Cell Reports scimago Q1 wos Q1 Open Access
2022-06-07 citations by CoLab: 43 Abstract  
To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.
Vila-Sanjurjo A., Smith P.M., Elson J.L.
2021-06-02 citations by CoLab: 4 Abstract  
Here we summarize our latest efforts to elucidate the role of mtDNA variantsMtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS Oxidative phosphorylation (OXPHOS) proteins. As a result, it appears safe to state that a complete view of mitochondrial diseaseMitochondrial diseases will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA Heterologous inferentialaAnalysis (HIA) ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA Heterologous inferentialaAnalysis (HIA) to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA Heterologous inferentialaAnalysis (HIA) studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA Heterologous inferentialaAnalysis (HIA) has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutationsMutations causing mitochondrial diseaseMitochondrial diseases might differ between the different mitochondrial haplogroups seen in human populations.
Zhunina O.A., Yabbarov N.G., Grechko A.V., Starodubova A.V., Ivanova E., Nikiforov N.G., Orekhov A.N.
2021-05-07 citations by CoLab: 45 PDF Abstract  
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Urbanczyk S., Baris O.R., Hofmann J., Golombek F., Castiglione K., Meng X., Bozec A., Mougiakakos D., Schulz S.R., Schuh W., Schlötzer-Schrehardt U., Steinmetz T.D., Brodesser S., Wiesner R.J., Mielenz D.
2021-01-16 citations by CoLab: 2 Abstract  
AbstractThe function of mitochondrial respiration during B cell fate decisions and differentiation remains equivocal. This study reveals that selection for mitochondrial fitness occurs during B cell activation and is essential for subsequent plasma cell differentiation. By expressing a mutated mitochondrial helicase in transitional B cells, we depleted mitochondrial DNA during B cell maturation, resulting in reduced oxidative phosphorylation. Although no changes in follicular B cell development were evident, germinal centers, class switch recombination to IgG, plasma cell generation and humoral immunity were diminished. Defective oxidative phosphorylation led to aberrant flux of the tricarboxylic acid cycle and lowered the amount of saturated phosphatidic acid. Consequently, MTOR activity and BLIMP-1 induction were curtailed whereas HIF1α, glycolysis and AMPK activity were amplified. Exogenous phosphatidic acid increased mTOR activity in activated B cells. Hence, mitochondrial function is required and selected for in activated B cells for the successful generation of functional plasma cells.

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?