Open Access
Open access
Frontiers in Molecular Biosciences, volume 8

The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes

Olga A. Zhunina 1
Andrey V. Grechko 2
Antonina V. Starodubova 3
Ekaterina Ivanova 4
Nikita G. Nikiforov 5, 6, 7
Alexander N. Orekhov 7, 8
Publication typeJournal Article
Publication date2021-05-07
scimago Q1
wos Q2
SJR1.232
CiteScore7.2
Impact factor3.9
ISSN2296889X
Biochemistry
Molecular Biology
Biochemistry, Genetics and Molecular Biology (miscellaneous)
Abstract

Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.

Elorza A.A., Soffia J.P.
2021-02-22 citations by CoLab: 36 PDF Abstract  
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Zia A., Farkhondeh T., Pourbagher-Shahri A.M., Samarghandian S.
Current Molecular Medicine scimago Q2 wos Q3
2021-02-19 citations by CoLab: 27 Abstract  
The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.
Esterhuizen K., Lindeque J.Z., Mason S., van der Westhuizen F.H., Rodenburg R.J., de Laat P., Smeitink J.A., Janssen M.C., Louw R.
Metabolomics scimago Q2 wos Q2
2021-01-13 citations by CoLab: 18 Abstract  
The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell’s energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy. We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options. A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS. The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD. We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.
Crooks D.R., Maio N., Lang M., Ricketts C.J., Vocke C.D., Gurram S., Turan S., Kim Y., Cawthon G.M., Sohelian F., De Val N., Pfeiffer R.M., Jailwala P., Tandon M., Tran B., et. al.
Science Signaling scimago Q1 wos Q1
2021-01-05 citations by CoLab: 68 Abstract  
Kidney tumors lacking fumarate hydratase become aggressive due to a metabolic shift arising from altered mitochondrial DNA. A metabolic shift from altered mitochondrial DNA Deficiency in the metabolic enzyme fumarate hydratase distinguishes an aggressive and lethal form of kidney cancer called hereditary leiomyomatosis and renal cell carcinoma (HLRCC). Crooks et al. investigated the molecular basis for why HLRCC tumors rapidly grow and metastasize. Deficiency in fumarate hydratase led to the accumulation of the metabolite fumarate, resulting in the modification and inactivation of factors involved in mitochondrial DNA replication and proofreading. Subsequently, mitochondrial DNA mutations increased, leading to loss of mitochondria and a metabolic shift to aerobic glycolysis. Thus, lack of a crucial metabolic enzyme leads to mitochondrial dysfunction and metabolic rewiring that promote tumor progression and metastasis. Understanding the mechanisms of the Warburg shift to aerobic glycolysis is critical to defining the metabolic basis of cancer. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an aggressive cancer characterized by biallelic inactivation of the gene encoding the Krebs cycle enzyme fumarate hydratase, an early shift to aerobic glycolysis, and rapid metastasis. We observed impairment of the mitochondrial respiratory chain in tumors from patients with HLRCC. Biochemical and transcriptomic analyses revealed that respiratory chain dysfunction in the tumors was due to loss of expression of mitochondrial DNA (mtDNA)–encoded subunits of respiratory chain complexes, caused by a marked decrease in mtDNA content and increased mtDNA mutations. We demonstrated that accumulation of fumarate in HLRCC tumors inactivated the core factors responsible for replication and proofreading of mtDNA, leading to loss of respiratory chain components, thereby promoting the shift to aerobic glycolysis and disease progression in this prototypic model of glucose-dependent human cancer.
Jiang Z., Teng L., Zhang S., Ding Y.
2020-12-07 citations by CoLab: 12 Abstract  
Abstract Mutations in mitochondrial DNA (mtDNA) are important causes for type 2 diabetes mellitus (T2DM). To investigate the association between mtDNA mutations/variants and diabetes, we reported here clinical, genetic and biochemical characterization of a Chinese pedigree with maternally transmitted T2DM. Using PCR and direct sequencing analysis of mitochondrial genomes from the matrilineal relatives, we identified two potential pathogenic mutations, m.T4216C (p.Y304H) and m.C5178A (p.L237M) in the ND1 and ND2 genes, respectively, together with a set of genetic polymorphisms belonging to the human mitochondrial haplogroup D4b. Moreover, by isolating and analyzing polymononuclear leukocytes generated from the T2DM patients and controls, we identified lower levels of mitochondrial membrane potential and ATP production in T2DM patients than in the controls, in contrast, a significantly higher level of reactive oxygen species was observed in the T2DM patients carrying both of the m.T4216C and m.C5178A mutations (p 
Fontana G.A., Gahlon H.L.
Nucleic Acids Research scimago Q1 wos Q1 Open Access
2020-10-06 citations by CoLab: 149 PDF Abstract  
Abstract Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
Lareau C.A., Ludwig L.S., Muus C., Gohil S.H., Zhao T., Chiang Z., Pelka K., Verboon J.M., Luo W., Christian E., Rosebrock D., Getz G., Boland G.M., Chen F., Buenrostro J.D., et. al.
Nature Biotechnology scimago Q1 wos Q1
2020-08-12 citations by CoLab: 211 Abstract  
Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo. Combining droplet-based ATAC-seq and mitochondrial DNA sequencing reveals clonal variation in human cells and tissues.
Lawless C., Greaves L., Reeve A.K., Turnbull D.M., Vincent A.E.
Open Biology scimago Q1 wos Q1 Open Access
2020-05-19 citations by CoLab: 118 Abstract  
How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.
Haumann S., Boix J., Knuever J., Bieling A., Vila Sanjurjo A., Elson J.L., Blakely E.L., Taylor R.W., Riet N., Abken H., Kashkar H., Hornig-Do H., Wiesner R.J.
Carcinogenesis scimago Q1 wos Q2
2020-04-07 citations by CoLab: 12 Abstract  
Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma cell lines (cHL) harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knock-down of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.
Peoples J.N., Saraf A., Ghazal N., Pham T.T., Kwong J.Q.
2019-12-19 citations by CoLab: 596 Abstract  
Beyond their role as a cellular powerhouse, mitochondria are emerging as integral players in molecular signaling and cell fate determination through reactive oxygen species (ROS). While ROS production has historically been portrayed as an unregulated process driving oxidative stress and disease pathology, contemporary studies reveal that ROS also facilitate normal physiology. Mitochondria are especially abundant in cardiac tissue; hence, mitochondrial dysregulation and ROS production are thought to contribute significantly to cardiac pathology. Moreover, there is growing appreciation that medical therapies designed to mediate mitochondrial ROS production can be important strategies to ameliorate cardiac disease. In this review, we highlight evidence from animal models that illustrates the strong connections between mitochondrial ROS and cardiac disease, discuss advancements in the development of mitochondria-targeted antioxidant therapies, and identify challenges faced in bringing such therapies into the clinic. Heart disease progression could be tackled by targeting signaling molecules that cause oxidative stress. Jennifer Kwong at Emory University School of Medicine in Atlanta, USA, and co-workers reviewed research into the role of mitochondria and their associated signaling molecules in the development of heart disease. Mitochondria are a major source of reactive oxygen species (ROS), signaling molecules involved in muscle contraction and calcium transfer in the heart, but they also destroy ROS to maintain a balance. Disruption to this balance can lead to elevated ROS, causing DNA and cellular damage, triggering disease. Animal trials using drugs to target mitochondrial ROS show promise in limiting heart disease progression. Further research is needed to determine whether this approach will work in humans and which specific heart problems might benefit from such therapies.
Anderson A.P., Luo X., Russell W., Yin Y.W.
Nucleic Acids Research scimago Q1 wos Q1 Open Access
2019-12-04 citations by CoLab: 73 PDF Abstract  
Abstract Mitochondrial DNA (mtDNA) resides in a high ROS environment and suffers more mutations than its nuclear counterpart. Increasing evidence suggests that mtDNA mutations are not the results of direct oxidative damage, rather are caused, at least in part, by DNA replication errors. To understand how the mtDNA replicase, Pol γ, can give rise to elevated mutations, we studied the effect of oxidation of Pol γ on replication errors. Pol γ is a high fidelity polymerase with polymerase (pol) and proofreading exonuclease (exo) activities. We show that Pol γ exo domain is far more sensitive to oxidation than pol; under oxidative conditions, exonuclease activity therefore declines more rapidly than polymerase. The oxidized Pol γ becomes editing-deficient, displaying a 20-fold elevated mutations than the unoxidized enzyme. Mass spectrometry analysis reveals that Pol γ exo domain is a hotspot for oxidation. The oxidized exo residues increase the net negative charge around the active site that should reduce the affinity to mismatched primer/template DNA. Our results suggest that the oxidative stress induced high mutation frequency on mtDNA can be indirectly caused by oxidation of the mitochondrial replicase.
Kahroba H., Shirmohamadi M., Hejazi M.S., Samadi N.
Life Sciences scimago Q1 wos Q1 Open Access
2019-12-01 citations by CoLab: 76 Abstract  
Cancer stem cells (CSCs) are subpopulation of tumor mass with exclusive abilities in self-renewing, stemness maintaining, and differentiation into the various non-stem cancer cells to provoke tumorigenesis, metastasis dissemination, drug-resistant, and cancer recurrence. Reactive oxygen species (ROS) impair cellular function by oxidizing cell components containing proteins, lipids, and DNA. Tumor oxidant status is elevated due to high metabolic activity under influence of abnormal growth factors, cytokines and function ROS-producing enzymes, including nitric oxide synthases, cyclooxygenases, and lipoxygenases. Nuclear factor-erythroid 2-related factor 2 (NRF2) is a transcriptional master regulator element which is believed to recognize cellular oxidative stress followed by binding to promoter of cyto-protective and anti-oxidative genes to maintain cellular redox status through promoting antioxidant response participants (glutathione peroxidase, glutathione reductase, thioredoxin reductase, ferritin, NADPH: quinone oxidoreductase 1). However, Nrf2 signaling protects malignant cells from ROS damage against tumor growth and chemoresistance. In addition, Nrf2 is able to participate in differentiation of certain stem cells by modulating autophagy procedure, also NRF2 provokes DNA damage response and facilitates drug metabolism and drug resistance by controlling of downstream enzyme and transporter members. In this review, we discuss the role of NRF2 in stemness, self-renewal ability, tumorigenesis and chemoresistance of CSCs.
Moro L.
Journal of Clinical Medicine scimago Q1 wos Q1 Open Access
2019-11-15 citations by CoLab: 52 PDF Abstract  
Aging is a major risk factor for developing cancer, suggesting that these two events may represent two sides of the same coin. It is becoming clear that some mechanisms involved in the aging process are shared with tumorigenesis, through convergent or divergent pathways. Increasing evidence supports a role for mitochondrial dysfunction in promoting aging and in supporting tumorigenesis and cancer progression to a metastatic phenotype. Here, a summary of the current knowledge of three aspects of mitochondrial biology that link mitochondria to aging and cancer is presented. In particular, the focus is on mutations and changes in content of the mitochondrial genome, activation of mitochondria-to-nucleus signaling and the newly discovered mitochondria-telomere communication.
Sazonova M.A., Sinyov V.V., Ryzhkova A.I., Sazonova M.D., Khasanova Z.B., Shkurat T.P., Karagodin V.P., Orekhov A.N., Sobenin I.A.
Biomolecules scimago Q1 wos Q1 Open Access
2019-09-18 citations by CoLab: 11 PDF Abstract  
In the present work, a pilot creation of four cybrid cultures with high heteroplasmy level was performed using mitochondrial genome mutations m.12315G>A and m.1555G>A. According to data of our preliminary studies, the threshold heteroplasmy level of mutation m.12315G>A is associated with atherosclerosis. At the same time, for a mutation m.1555G>A, such a heteroplasmy level is associated with the absence of atherosclerosis. Cybrid cultures were created by fusion of rho0-cells and mitochondria from platelets with a high heteroplasmy level of the investigated mutations. To create rho0-cells, THP-1 culture of monocytic origin was taken. According to the results of the study, two cybrid cell lines containing mutation m.12315G>A with the heteroplasmy level above the threshold value (25% and 44%, respectively) were obtained. In addition, two cybrid cell lines containing mutation m.1555G>A with a high heteroplasmy level (24%) were obtained. Cybrid cultures with mtDNA mutation m.12315G>A can be used to model both the occurrence and development of atherosclerosis in cells and the titration of drug therapy for patients with atherosclerosis. With the help of cybrid cultures containing single nucleotide replacement of mitochondrial genome m.1555G>A, it is possible to develop approaches to the gene therapy of atherosclerosis.
Volobueva A., Grechko A., Yet S., Sobenin I., Orekhov A.
Biomolecules scimago Q1 wos Q1 Open Access
2019-08-18 citations by CoLab: 27 PDF Abstract  
Atherosclerosis-related cardiovascular diseases remain the leading cause of morbidity and mortality, and the search for novel diagnostic and therapeutic methods is ongoing. Mitochondrial DNA (mtDNA) mutations associated with atherosclerosis represent one of the less explored aspects of the disease pathogenesis that may bring some interesting opportunities for establishing novel molecular markers and, possibly, new points of therapeutic intervention. Recent studies have identified a number of mtDNA mutations, for which the heteroplasmy level was positively or negatively associated with atherosclerosis, including the disease at its early, subclinical stages. In this review, we summarize the results of these studies, providing a list of human mtDNA mutations potentially involved in atherosclerosis. The molecular mechanisms underlying such involvement remain to be elucidated, although it is likely that some of them may be responsible for the increased oxidative stress, which plays an important role in atherosclerosis.
Junco M., Ventura C., Santiago Valtierra F.X., Maldonado E.N.
Antioxidants scimago Q1 wos Q1 Open Access
2024-12-19 citations by CoLab: 0 PDF Abstract  
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Pal S., Firdous S.M.
Discover Oncology scimago Q2 wos Q2 Open Access
2024-11-04 citations by CoLab: 1 PDF Abstract  
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer’s development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal–organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Salis Torres A., Lee J., Caporali A., Semple R.K., Horrocks M.H., MacRae V.E.
2024-10-12 citations by CoLab: 0 PDF Abstract  
Individuals diagnosed with Parkinson’s disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Demyashkin G., Parshenkov M., Koryakin S., Skovorodko P., Shchekin V., Yakimenko V., Uruskhanova Z., Ugurchieva D., Pugacheva E., Ivanov S., Shegay P., Kaprin A.
Biomedicines scimago Q1 wos Q1 Open Access
2024-09-26 citations by CoLab: 0 PDF Abstract  
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver’s critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C’s potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Qu Y., Meng B., Cai S., Yang B., He Y., Fu C., Li X., Li P., Cao Z., Mao X., Teng W., Shi S.
Journal of Nanobiotechnology scimago Q1 wos Q1 Open Access
2024-09-06 citations by CoLab: 3 PDF Abstract  
Over 50 billion cells undergo apoptosis each day in an adult human to maintain tissue homeostasis by eliminating damaged or unwanted cells. Apoptotic deficiency can lead to age-related diseases with reduced apoptotic metabolites. However, whether apoptotic metabolism regulates aging is unclear. Here, we show that aging mice and apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) mice exhibit decreased apoptotic levels along with increased aging phenotypes in the skeletal bones, which can be rescued by the treatment with apoptosis inducer staurosporine (STS) and stem cell-derived apoptotic vesicles (apoVs). Moreover, embryonic stem cells (ESC)-apoVs can significantly reduce senescent hallmarks and mtDNA leakage to rejuvenate aging bone marrow mesenchymal stem cells (MSCs) and ameliorate senile osteoporosis when compared to MSC-apoVs. Mechanistically, ESC-apoVs use TCOF1 to upregulate mitochondrial protein transcription, resulting in FLVCR1-mediated mitochondrial functional homeostasis. Taken together, this study reveals a previously unknown role of apoptotic metabolites in ameliorating bone aging phenotypes and the unique role of TCOF1/FLVCR1 in maintaining mitochondrial homeostasis.
Liang R., Zhu L., Huang Y., Chen J., Tang Q.
Biogerontology scimago Q1 wos Q1
2024-08-28 citations by CoLab: 6 Abstract  
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism’s lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Li A., Qin Y., Gong G.
Advanced Biology scimago Q1 wos Q3
2024-07-09 citations by CoLab: 0 Abstract  
AbstractAging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.
Belenichev I., Popazova O., Bukhtiyarova N., Savchenko D., Oksenych V., Kamyshnyi O.
Antioxidants scimago Q1 wos Q1 Open Access
2024-04-23 citations by CoLab: 15 PDF Abstract  
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction—the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Ansari M.M., Ghosh M., Lee D., Son Y.
Ageing Research Reviews scimago Q1 wos Q1
2024-04-01 citations by CoLab: 7 Abstract  
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
da C. Pinaffi-Langley A.C., Melia E., Hays F.A.
2024-03-25 citations by CoLab: 0 PDF Abstract  
This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites’ impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc–mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.
Marzoog B.A.
2024-03-01 citations by CoLab: 5 Abstract  
Abstract: Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Farooq S., Naqvi S.F., Muhammad S., Piotrowska-Nowaka A., Bukhari S.A., Javed A., Irfan M., Khan I.A.
2024-02-02 citations by CoLab: 0 Abstract  
Abstract Background Sequence changes of human mitochondrial DNA (mtDNA) are involved in many human diseases. Mitochondrial DNA variants have been associated with development of type 2 diabetes, which is becoming more prevalent in the Pakistani population. We conducted a case-control study to investigate the role of mtDNA variants associated with diabetes in the Pakistani population. Results Analysis of the HVS2 region showed two variants m.309_310insCT and m.315dup were associated with diabetes. By analyzing complete mtDNA, no variant was found to have significantly different distribution between groups. However, comparison of our diabetic samples’ variants with 1000 Genome Project variants showed eight highly significant variations in mitochondrial genome, four in non-coding region i.e. (m.513G > A, m.195T > C, m.16189T > C, m.16265A > C) and four in coding regions i.e. m.9336A > G (CO-III gene), m.11935T > C (ND4 gene), m.14766C > T (CYB gene) and m.7193T > C (CO-I gene) the last one being a rare mitochondrial variant also. We also found one novel variant m.570C > CACCC in the diabetic group. Conclusion We found specific variations in the mitochondrial genome are associated with type 2 diabetes in the Pakistani patients. These findings suggest that mtDNA variations may play a role in the development of type 2 diabetes in the Pakistani population.
Dogan N., Ozuynuk-Ertugrul A.S., Balkanay O.O., Yildiz C.E., Guclu-Geyik F., Kirsan C.B., Coban N.
Gene scimago Q2 wos Q2
2024-02-01 citations by CoLab: 3 Abstract  
Epicardial adipose tissue (EAT) surrounds the heart and coronary arteries and is important for comprehending the pathogenesis of coronary artery disease (CAD). We aimed to evaluate the expressions of mitochondrial biogenesis- and CAD-related genes and miRNAs in EAT by comparing them to visceral adipose tissue (VAT) in CAD, diabetes, and obesity subgroups. In this study, a total of 93 individuals were recruited, and EAT samples (63 CAD; 30 non-CAD) and VAT samples from 65 individuals (46 CAD; 19 non-CAD) were collected. For further analysis, the study population was divided according to obesity and diabetes status. PRKAA1, PPARGC1A, SIRT1, RELA, TNFA, and miR-155-5p, let-7g-5p, miR-1247-5p, miR-326 expression levels were examined. PRKAA1 and let-7g-5p were differentially expressed in EAT compared to VAT. TNFA expression was upregulated significantly in both tissues of CAD patients. In EAT, PRKAA1, PPARGC1A, and SIRT1 were downregulated with diabetes. Moreover, PPARGC1A expression is decreased under the condition of obesity in both tissues. EAT expressions of miR-1247-5p and miR-326 were downregulated with obesity, while miR-155-5p is decreased only in the VAT of obese. Also, miRNAs and genes were correlated with biochemical parameters and each other in EAT and VAT (p < 0.050). The findings demonstrating distinct let-7g-5p and AMPKα1 mRNA expression between EAT and VAT underscores the importance of tissue-specific regulation in different clinical outcomes. In addition, the differential expressions of investigated genes and miRNAs highlight their responsiveness to obesity, DM, and CAD in adipose tissues.

Top-30

Journals

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

Publishers

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?