volume 102 issue 8 publication number 085149

Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2

S. O. Filnov 1
I I Klimovskikh 1
D A Estyunin 1
A. V. FEDOROV 2, 3
V Yu Voroshnin 1, 3
V. Yu. Voroshnin 1, 3
A V Koroleva 1
A G Rybkin 1
E V Shevchenko 1
E. V. Shevchenko 1
Ziya S. Aliev 4, 5
M. B. Babanly 6, 7
M. Babanly 6, 7
I R Amiraslanov 5, 7
I. R. Amiraslanov 5, 7
N. T. Mamedov 5
E. F. Schwier 8
K. MIYAMOTO 8
Koji Miyamoto 8
T. Okuda 8
S. Kumar 8
A. Kimura 9, 10
Akihiko Kimura 9, 10
V. M. Misheneva 1
A. M. SHIKIN 1
E. V. CHULKOV 1, 11, 12, 13
E.V. Chulkov 1, 11, 12, 13
Publication typeJournal Article
Publication date2020-08-26
scimago Q1
wos Q2
SJR1.303
CiteScore6.2
Impact factor3.7
ISSN24699950, 24699969, 10980121, 1550235X
Abstract
A tunable gap in the topological surface state is of great interest for novel spintronic devices and applications in quantum computing. Here, we study the surface electronic structure and magnetic properties of the Gd-doped topological insulator $\mathrm{Tl}{\mathrm{Bi}}_{0.9}{\mathrm{Gd}}_{0.1}{\mathrm{Se}}_{2}$. Utilizing superconducting quantum interference device magnetometry, we show paramagnetic behavior down to 2 K. Combining spin- and angle-resolved photoemission spectroscopy with different polarizations of light, we demonstrate that the topological surface state is characterized by the Dirac cone with a helical spin structure and confirm its localization within the bulk band gap. By using different light sources in photoemission spectroscopy, various Dirac-point gap values were observed: 50 meV for $h\ensuremath{\nu}=18\phantom{\rule{0.28em}{0ex}}\mathrm{eV}$ and 20 meV for $h\ensuremath{\nu}=6.3\phantom{\rule{0.28em}{0ex}}\mathrm{eV}$. Here, we discuss the gap observation by the angle-resolved photoemission spectroscopy method as a consequence of the scattering processes. Simulating the corresponding spectral function, we demonstrate that the asymmetric energy-distribution curve of the surface state leads to an overestimation of the corresponding gap value. We speculate that 20 meV in our case is a trustworthy value and attribute this gap to be originated by scattering both on magnetic and charge impurities provided by Gd atoms and surface defects. Given the complexity and importance of scattering processes in the topological surface state together with our observations of distinctive photoemission asymmetry, we believe our results are important for research of the massive Dirac fermions in novel quantum materials.
Found 
Found 

Top-30

Journals

1
2
Physical Review Materials
2 publications, 28.57%
Nanomaterials
1 publication, 14.29%
JOM
1 publication, 14.29%
Physical Review B
1 publication, 14.29%
Journal of Phase Equilibria and Diffusion
1 publication, 14.29%
Chemistry of Materials
1 publication, 14.29%
1
2

Publishers

1
2
3
American Physical Society (APS)
3 publications, 42.86%
Springer Nature
2 publications, 28.57%
MDPI
1 publication, 14.29%
American Chemical Society (ACS)
1 publication, 14.29%
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
7
Share
Cite this
GOST |
Cite this
GOST Copy
Filnov S. O. et al. Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2 // Physical Review B. 2020. Vol. 102. No. 8. 085149
GOST all authors (up to 50) Copy
Filnov S. O., Klimovskikh I. I., Klimovskikh I. I., Estyunin D. A., Estyunin D. A., FEDOROV A. V., Voroshnin V. Yu., Voroshnin V. Y., Koroleva A. V., Koroleva A. V., Rybkin A. G., Rybkin A. G., Shevchenko E. V., Shevchenko E. V., Aliev Z. S., Babanly M. B., Babanly M., Amiraslanov I. R., Amiraslanov I. R., Mamedov N. T., Mamedov N., Schwier E. F., Schwier E. F., MIYAMOTO K., Miyamoto K., Okuda T., Kumar S., Kimura A., Kimura A., Misheneva V. M., SHIKIN A. M., Shikin A. M., CHULKOV E. V., Chulkov E. Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2 // Physical Review B. 2020. Vol. 102. No. 8. 085149
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1103/PhysRevB.102.085149
UR - https://doi.org/10.1103/PhysRevB.102.085149
TI - Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2
T2 - Physical Review B
AU - Filnov, S. O.
AU - Klimovskikh, I I
AU - Klimovskikh, Ilya I.
AU - Estyunin, D A
AU - Estyunin, Dmitry A.
AU - FEDOROV, A. V.
AU - Voroshnin, V Yu
AU - Voroshnin, V. Yu.
AU - Koroleva, A V
AU - Koroleva, A. V.
AU - Rybkin, A G
AU - Rybkin, Artem G.
AU - Shevchenko, E V
AU - Shevchenko, E. V.
AU - Aliev, Ziya S.
AU - Babanly, M. B.
AU - Babanly, M.
AU - Amiraslanov, I R
AU - Amiraslanov, I. R.
AU - Mamedov, N. T.
AU - Mamedov, Nazim
AU - Schwier, E. F.
AU - Schwier, Eike. F.
AU - MIYAMOTO, K.
AU - Miyamoto, Koji
AU - Okuda, T.
AU - Kumar, S.
AU - Kimura, A.
AU - Kimura, Akihiko
AU - Misheneva, V. M.
AU - SHIKIN, A. M.
AU - Shikin, Alexander M.
AU - CHULKOV, E. V.
AU - Chulkov, E.V.
PY - 2020
DA - 2020/08/26
PB - American Physical Society (APS)
IS - 8
VL - 102
SN - 2469-9950
SN - 2469-9969
SN - 1098-0121
SN - 1550-235X
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Filnov,
author = {S. O. Filnov and I I Klimovskikh and Ilya I. Klimovskikh and D A Estyunin and Dmitry A. Estyunin and A. V. FEDOROV and V Yu Voroshnin and V. Yu. Voroshnin and A V Koroleva and A. V. Koroleva and A G Rybkin and Artem G. Rybkin and E V Shevchenko and E. V. Shevchenko and Ziya S. Aliev and M. B. Babanly and M. Babanly and I R Amiraslanov and I. R. Amiraslanov and N. T. Mamedov and Nazim Mamedov and E. F. Schwier and Eike. F. Schwier and K. MIYAMOTO and Koji Miyamoto and T. Okuda and S. Kumar and A. Kimura and Akihiko Kimura and V. M. Misheneva and A. M. SHIKIN and Alexander M. Shikin and E. V. CHULKOV and E.V. Chulkov},
title = {Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2},
journal = {Physical Review B},
year = {2020},
volume = {102},
publisher = {American Physical Society (APS)},
month = {aug},
url = {https://doi.org/10.1103/PhysRevB.102.085149},
number = {8},
pages = {085149},
doi = {10.1103/PhysRevB.102.085149}
}