том 27 страницы 61-65

Deep Filtering: Signal Extraction and Reconstruction Using Complex Time-Frequency Filters

Тип публикацииJournal Article
Дата публикации2020-01-01
scimago Q1
wos Q2
БС1
SJR0.938
CiteScore7.2
Impact factor3.9
ISSN10709908, 15582361
Electrical and Electronic Engineering
Applied Mathematics
Signal Processing
Краткое описание
Signal extraction from a single-channel mixture with additional undesired signals is most commonly performed using time-frequency (TF) masks. Typically, the mask is estimated with a deep neural network (DNN), and element-wise applied to the complex mixture short-time Fourier transform (STFT) representation to perform the extraction. Ideal mask magnitudes are zero for solely undesired signals in a TF bin and undefined for total destructive interference. Usually, masks have an upper bound to provide well-defined DNN outputs at the cost of limited extraction capabilities. We propose to estimate with a DNN a complex TF filter for each mixture TF bin which maps an STFT area in the respective mixture to the desired TF bin to address destructive interference in mixture TF bins. The DNN is optimized by minimizing the error between the extracted and the ground-truth desired signal allowing to learn the TF filters without having to specify ground-truth TF filters. We compare our approach with complex and real-valued TF masks by separating speech from a variety of different sound and noise classes from the Google AudioSet corpus. We also process the mixture STFT with notch-filters and zero whole time-frames, to simulate packet-loss during transmission, to demonstrate the reconstruction capabilities of our approach. The proposed method outperformed the baselines, especially when notch-filters and time-frame zeroing were applied.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
IEEE/ACM Transactions on Audio Speech and Language Processing
5 публикаций, 8.33%
Sensors
3 публикации, 5%
IEEE Access
2 публикации, 3.33%
Applied Acoustics
2 публикации, 3.33%
IEEE Signal Processing Letters
2 публикации, 3.33%
Neural Networks
2 публикации, 3.33%
Electronics (Switzerland)
1 публикация, 1.67%
Journal of Control, Automation and Electrical Systems
1 публикация, 1.67%
Evolving Systems
1 публикация, 1.67%
Scientific Reports
1 публикация, 1.67%
Speech Communication
1 публикация, 1.67%
Tsinghua Science and Technology
1 публикация, 1.67%
Advances in Science, Technology & Innovation
1 публикация, 1.67%
Plant Methods
1 публикация, 1.67%
Frontiers in Physics
1 публикация, 1.67%
International Journal of Speech Technology
1 публикация, 1.67%
Journal of Manufacturing Processes
1 публикация, 1.67%
IEEE Signal Processing Magazine
1 публикация, 1.67%
Journal of Fourier Analysis and Applications
1 публикация, 1.67%
1
2
3
4
5

Издатели

5
10
15
20
25
30
35
40
Institute of Electrical and Electronics Engineers (IEEE)
40 публикаций, 66.67%
Springer Nature
7 публикаций, 11.67%
Elsevier
6 публикаций, 10%
MDPI
4 публикации, 6.67%
Tsinghua University Press
1 публикация, 1.67%
Frontiers Media S.A.
1 публикация, 1.67%
Wiley
1 публикация, 1.67%
5
10
15
20
25
30
35
40
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
60
Поделиться
Цитировать
ГОСТ |
Цитировать
Mack W., Habets E. Deep Filtering: Signal Extraction and Reconstruction Using Complex Time-Frequency Filters // IEEE Signal Processing Letters. 2020. Vol. 27. pp. 61-65.
ГОСТ со всеми авторами (до 50) Скопировать
Mack W., Habets E. Deep Filtering: Signal Extraction and Reconstruction Using Complex Time-Frequency Filters // IEEE Signal Processing Letters. 2020. Vol. 27. pp. 61-65.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/lsp.2019.2955818
UR - https://doi.org/10.1109/lsp.2019.2955818
TI - Deep Filtering: Signal Extraction and Reconstruction Using Complex Time-Frequency Filters
T2 - IEEE Signal Processing Letters
AU - Mack, Wolfgang
AU - Habets, Emanuel
PY - 2020
DA - 2020/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 61-65
VL - 27
SN - 1070-9908
SN - 1558-2361
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Mack,
author = {Wolfgang Mack and Emanuel Habets},
title = {Deep Filtering: Signal Extraction and Reconstruction Using Complex Time-Frequency Filters},
journal = {IEEE Signal Processing Letters},
year = {2020},
volume = {27},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://doi.org/10.1109/lsp.2019.2955818},
pages = {61--65},
doi = {10.1109/lsp.2019.2955818}
}