Open Access
Hybrid Policy Learning for Multi-Agent Pathfinding
Тип публикации: Journal Article
Дата публикации: 2021-09-09
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
General Engineering
General Computer Science
Краткое описание
In this work we study the behavior of groups of autonomous vehicles, which are the part of the Internet of Vehicles systems. One of the challenging modes of operation of such systems is the case when the observability of each vehicle is limited and the global/local communication is unstable, e.g. in the crowded parking lots. In such scenarios the vehicles have to rely on the local observations and exhibit cooperative behavior to ensure safe and efficient trips. This type of problems can be abstracted to the so-called multi-agent pathfinding when a group of agents, confined to a graph, have to find collision-free paths to their goals (ideally, minimizing an objective function e.g. travel time). Widely used algorithms for solving this problem rely on the assumption that a central controller exists for which the full state of the environment (i.e. the agents current positions, their targets, configuration of the static obstacles etc.) is known and they cannot be straightforwardly be adapted to the partially-observable setups. To this end, we suggest a novel approach which is based on the decomposition of the problem into the two sub-tasks: reaching the goal and avoiding the collisions. To accomplish each of this task we utilize reinforcement learning methods such as Deep Monte Carlo Tree Search, Q-mixing networks, and policy gradients methods to design the policies that map the agents’ observations to actions. Next, we introduce the policy-mixing mechanism to end up with a single hybrid policy that allows each agent to exhibit both types of behavior – the individual one (reaching the goal) and the cooperative one (avoiding the collisions with other agents). We conduct an extensive empirical evaluation that shows that the suggested hybrid-policy outperforms standalone stat-of-the-art reinforcement learning methods for this kind of problems by a notable margin.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Lecture Notes in Computer Science
3 публикации, 15.79%
|
|
|
Doklady Mathematics
2 публикации, 10.53%
|
|
|
IEEE Access
2 публикации, 10.53%
|
|
|
PeerJ Computer Science
1 публикация, 5.26%
|
|
|
Studies in Computational Intelligence
1 публикация, 5.26%
|
|
|
Journal of Marine Science and Engineering
1 публикация, 5.26%
|
|
|
Applied Intelligence
1 публикация, 5.26%
|
|
|
Knowledge-Based Systems
1 публикация, 5.26%
|
|
|
Optical Memory and Neural Networks (Information Optics)
1 публикация, 5.26%
|
|
|
Drones
1 публикация, 5.26%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 5.26%
|
|
|
Engineering Applications of Artificial Intelligence
1 публикация, 5.26%
|
|
|
1
2
3
|
Издатели
|
1
2
3
4
5
|
|
|
Springer Nature
5 публикаций, 26.32%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 26.32%
|
|
|
MDPI
3 публикации, 15.79%
|
|
|
Pleiades Publishing
2 публикации, 10.53%
|
|
|
Elsevier
2 публикации, 10.53%
|
|
|
PeerJ
1 публикация, 5.26%
|
|
|
Allerton Press
1 публикация, 5.26%
|
|
|
1
2
3
4
5
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
19
Всего цитирований:
19
Цитирований c 2024:
10
(52.63%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Skrynnik A. et al. Hybrid Policy Learning for Multi-Agent Pathfinding // IEEE Access. 2021. Vol. 9. pp. 126034-126047.
ГОСТ со всеми авторами (до 50)
Скопировать
Skrynnik A., Yakovleva A., Davydov V., Yakovlev K., Panov A. Hybrid Policy Learning for Multi-Agent Pathfinding // IEEE Access. 2021. Vol. 9. pp. 126034-126047.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/ACCESS.2021.3111321
UR - https://doi.org/10.1109/ACCESS.2021.3111321
TI - Hybrid Policy Learning for Multi-Agent Pathfinding
T2 - IEEE Access
AU - Skrynnik, Alexey
AU - Yakovleva, Alexandra
AU - Davydov, Vasilii
AU - Yakovlev, Konstantin
AU - Panov, Aleksandr
PY - 2021
DA - 2021/09/09
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 126034-126047
VL - 9
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Skrynnik,
author = {Alexey Skrynnik and Alexandra Yakovleva and Vasilii Davydov and Konstantin Yakovlev and Aleksandr Panov},
title = {Hybrid Policy Learning for Multi-Agent Pathfinding},
journal = {IEEE Access},
year = {2021},
volume = {9},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {sep},
url = {https://doi.org/10.1109/ACCESS.2021.3111321},
pages = {126034--126047},
doi = {10.1109/ACCESS.2021.3111321}
}
Лаборатории