Roadmap on Spin-Wave Computing
A. V. Chumak
1
,
P Kabos
2
,
M. Wu
3
,
Claas Abert
1
,
A.O Adeyeye
5
,
J. Akerman
6
,
F.G. Aliev
7
,
A. Anane
8
,
A. Awad
6
,
C.H. Back
9
,
A. BARMAN
10
,
Gerrit E. W. Bauer
11
,
Markus Becherer
12
,
E N Beginin
13
,
V A S V Bittencourt
14
,
Ya.M. Blanter
15
,
P. Bortolotti
8
,
I Boventer
8
,
Dmytro A. Bozhko
16
,
S A Bunyaev
17
,
J J Carmiggelt
15
,
R R Cheenikundil
18
,
Florin Ciubotaru
4
,
Sorin Cotofana
19
,
G. Csaba
20
,
O. V. Dobrovolskiy
1
,
C. Dubs
21
,
M. Elyasi
11
,
K. G. Fripp
22
,
H Fulara
23
,
I.A. Golovchanskiy
24
,
P. P. Graczyk
26
,
Dirk Grundler
27
,
Paweł Gruszecki
28
,
G. Gubbiotti
29
,
K Guslienko
30
,
A. Haldar
31
,
S. Hamdioui
19
,
Riccardo Hertel
18
,
B Hillebrands
32
,
T Hioki
11
,
A Houshang
6
,
C.-M. Hu
33
,
H. Huebl
34
,
M. HUTH
35
,
Ezio Iacocca
16
,
G.N Kakazei
17
,
A Khitun
37
,
R Khymyn
6
,
T. Kikkawa
38
,
M. Klaui
39
,
O. Klein
40
,
J. Kłos
28
,
Sebastian Knauer
1
,
Sabri Koraltan
1
,
M. Kostylev
41
,
Maciej Krawczyk
28
,
I N Krivorotov
42
,
V. V. Kruglyak
22
,
S. Ladak
44
,
R. Lebrun
8
,
Y. Li
45
,
M. Lindner
21
,
Rair Macêdo
46
,
Sina Mayr
47
,
G. A. Melkov
48
,
Szymon Mieszczak
28
,
Yasunobu Nakamura
49
,
H T Nembach
2
,
Andrey A. Nikitin
50
,
S. A. Nikitov
51
,
V. Novosad
45
,
J A Otalora
52
,
Y Otani
53
,
A. Papp
20
,
B Pigeau
54
,
Philipp Pirro
32
,
Wolfgang Porod
55
,
F Porrati
35
,
H. QIN
56
,
Bivas Rana
28
,
T. Reimann
21
,
F. Riente
57
,
Oriol Romero-Isart
25
,
A Ross
8
,
A. V. Sadovnikov
13
,
A.R. Safin
51
,
E. Saitoh
11
,
G. Schmidt
58
,
H. Schultheiss
59
,
K Schultheiss
59
,
A A Serga
32
,
Sanchar Sharma
14
,
J. M. Shaw
2
,
Dieter Suess
1
,
O. Surzhenko
21
,
Krzysztof Szulc
28
,
Takuya Taniguchi
9
,
M. Urbanek
60
,
K. Usami
49
,
Alexey B. Ustinov
50
,
T Van Der Sar
15
,
S. van Dijken
56
,
V I Vasyuchka
32
,
R Verba
61
,
S. Viola Kusminskiy
14
,
Qi Wang
1
,
Martin P. Weides
46
,
M. Weiler
32
,
Sebastian Wintz
62
,
S P Wolski
49
,
X. Zhang
63
7
Departamento Física de la Materia Condensada C-III, Instituto Nicolás Cabrera (INC) and Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
|
8
Unité Mixte de Physique Centre National de la Recherche Scientifique (CNRS), Thales Université Paris Saclay, Palaiseau, France
|
12
18
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
|
20
Faculty for Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
|
21
INNOVENT e.V. Technologieentwicklung, Jena, Germany
|
32
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
|
34
Bayerische Akademie der Wissenschaften, Walther-Meißner Institut, Garching, Germany
|
40
41
43
Nord Quantique, Sherbrooke, Canada
|
48
Faculty of RadioPhysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
|
49
52
Departamento de Física, Universidad Católica del Norte, Antofagasta, Chile
|
60
61
Institute of Magnetism, Kyiv, Ukraine
|
Publication type: Journal Article
Publication date: 2022-06-01
scimago Q2
wos Q3
SJR: 0.729
CiteScore: 4.8
Impact factor: 1.9
ISSN: 00189464, 19410069
Electronic, Optical and Magnetic Materials
Electrical and Electronic Engineering
Abstract
Magnonics is a field of science that addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operations in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of the current challenges and the outlook of the further development of the research directions.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
10
20
30
40
50
|
|
|
Physical Review B
50 publications, 13.16%
|
|
|
Physical Review Applied
44 publications, 11.58%
|
|
|
Applied Physics Letters
31 publications, 8.16%
|
|
|
Journal of Applied Physics
22 publications, 5.79%
|
|
|
Journal of Magnetism and Magnetic Materials
15 publications, 3.95%
|
|
|
Physical Review Letters
12 publications, 3.16%
|
|
|
Nature Communications
10 publications, 2.63%
|
|
|
Scientific Reports
9 publications, 2.37%
|
|
|
Physical Review Materials
8 publications, 2.11%
|
|
|
Advanced Functional Materials
8 publications, 2.11%
|
|
|
Nano Letters
7 publications, 1.84%
|
|
|
Journal of Physics Condensed Matter
7 publications, 1.84%
|
|
|
Journal Physics D: Applied Physics
6 publications, 1.58%
|
|
|
AIP Advances
5 publications, 1.32%
|
|
|
Science advances
5 publications, 1.32%
|
|
|
Bulletin of the Russian Academy of Sciences: Physics
4 publications, 1.05%
|
|
|
npj Spintronics
4 publications, 1.05%
|
|
|
Nanomaterials
3 publications, 0.79%
|
|
|
Nature Nanotechnology
3 publications, 0.79%
|
|
|
ACS applied materials & interfaces
3 publications, 0.79%
|
|
|
APL Materials
3 publications, 0.79%
|
|
|
IEEE Transactions on Magnetics
3 publications, 0.79%
|
|
|
Chaos, Solitons and Fractals
3 publications, 0.79%
|
|
|
Physica Scripta
3 publications, 0.79%
|
|
|
Nature Electronics
3 publications, 0.79%
|
|
|
Advanced Materials
3 publications, 0.79%
|
|
|
Nature Materials
2 publications, 0.53%
|
|
|
Advanced Physics Research
2 publications, 0.53%
|
|
|
Nanotechnology
2 publications, 0.53%
|
|
|
10
20
30
40
50
|
Publishers
|
20
40
60
80
100
120
|
|
|
American Physical Society (APS)
117 publications, 30.79%
|
|
|
AIP Publishing
65 publications, 17.11%
|
|
|
Springer Nature
46 publications, 12.11%
|
|
|
Elsevier
33 publications, 8.68%
|
|
|
IOP Publishing
23 publications, 6.05%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
22 publications, 5.79%
|
|
|
Wiley
21 publications, 5.53%
|
|
|
American Chemical Society (ACS)
14 publications, 3.68%
|
|
|
Pleiades Publishing
10 publications, 2.63%
|
|
|
MDPI
9 publications, 2.37%
|
|
|
American Association for the Advancement of Science (AAAS)
5 publications, 1.32%
|
|
|
The Russian Academy of Sciences
3 publications, 0.79%
|
|
|
Optica Publishing Group
2 publications, 0.53%
|
|
|
Annual Reviews
1 publication, 0.26%
|
|
|
RTU MIREA
1 publication, 0.26%
|
|
|
Physical Society of Japan
1 publication, 0.26%
|
|
|
Japan Society of Applied Physics
1 publication, 0.26%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
1 publication, 0.26%
|
|
|
American Vacuum Society
1 publication, 0.26%
|
|
|
Royal Society of Chemistry (RSC)
1 publication, 0.26%
|
|
|
SPIE-Intl Soc Optical Eng
1 publication, 0.26%
|
|
|
20
40
60
80
100
120
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
386
Total citations:
386
Citations from 2024:
238
(62%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
RIS
Cite this
BibTex (up to 50 authors)
Copy
@article{2022_Chumak,
author = {A. V. Chumak and P Kabos and M. Wu and Claas Abert and Christoph Adelmann and A.O Adeyeye and J. Akerman and F.G. Aliev and A. Anane and A. Awad and C.H. Back and A. BARMAN and Gerrit E. W. Bauer and Markus Becherer and E N Beginin and V A S V Bittencourt and Ya.M. Blanter and P. Bortolotti and I Boventer and Dmytro A. Bozhko and S A Bunyaev and J J Carmiggelt and R R Cheenikundil and Florin Ciubotaru and Sorin Cotofana and G. Csaba and O. V. Dobrovolskiy and C. Dubs and M. Elyasi and K. G. Fripp and H Fulara and I.A. Golovchanskiy and Carlos Gonzalez-Ballestero and P. P. Graczyk and Dirk Grundler and Paweł Gruszecki and G. Gubbiotti and K Guslienko and A. Haldar and S. Hamdioui and Riccardo Hertel and B Hillebrands and T Hioki and A Houshang and C.-M. Hu and H. Huebl and M. HUTH and Ezio Iacocca and M. Benjamin Jungfleisch and G.N Kakazei and others},
title = {Roadmap on Spin-Wave Computing},
journal = {IEEE Transactions on Magnetics},
year = {2022},
volume = {58},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://doi.org/10.1109/TMAG.2022.3149664},
number = {6},
pages = {1--72},
doi = {10.1109/TMAG.2022.3149664}
}
Cite this
MLA
Copy
Chumak, A. V., et al. “Roadmap on Spin-Wave Computing.” IEEE Transactions on Magnetics, vol. 58, no. 6, Jun. 2022, pp. 1-72. https://doi.org/10.1109/TMAG.2022.3149664.
Profiles
- C Abert
- C Adelmann
- A O Adeyeye
- F G Aliev
- C H Back
- G E Bauer
- M Becherer
- E N Beginin
- Y M Blanter
- D A Bozhko
- A V Chumak
- F Ciubotaru
- S D Cotofana
- C Dubs
- Igor A Golovchanskiy
- C Gonzalez-Ballestero
- P P Graczyk
- D Grundler
- P Gruszecki
- G Gubbiotti
- A Haldar
- R Hertel
- E Iacocca
- M B Jungfleisch
- P Kabos
- J W Klos
- S G Knauer
- S Koraltan
- M Krawczyk
- V V Kruglyak
- D Lachance-Quirion
- R Lebrun
- R H Macedo
- S Mayr
- S Mieszczak
- Y Nakamura Nakamura
- Nikolai A Nikitin
- Sergey A Nikitov
- P Pirro
- W Porod
- B Rana
- F Riente
- O Romero-Isart
- Alexandr V Sadovnikov
- Ansar Rizaevich Safin
- G A Schmidt
- S Sharma
- D L Suess
- O Surzhenko
- K Szulc
- T Taniguchi
- A B Ustinov
- S van van Dijken
- Qing Wang
- Q Wang
- Martin P Weides
- S Wintz