Open Access
Open access
Science, том 374, издание 6575, номера страниц: 1616-1620

Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration

Cretu Ovidiu 4
Jiang Song 5
Zhang Lili 5
Chen Guohai 6
Xiang Rong 7
Zhou Xin 1
Cheng Hui-Ming 5, 9, 10
Bando Yoshio 11, 12
Liu Chang 5
Sorokin P.B. 2, 13
1
 
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
4
 
Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
5
 
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
6
 
CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan.
7
 
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
8
 
Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan.
9
 
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.
10
 
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
11
 
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
12
 
Australian Institute for Innovative Materials, University of Wollongong, North Wollongong NSW 2500, Australia.
14
 
Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia.
Тип документаJournal Article
Дата публикации2021-12-24
ИздательAmerican Association for the Advancement of Science
Название журналаScience
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 202163.71
ISSN00368075, 10959203
Multidisciplinary
Краткое описание
Straining to make a transistor

The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDS

Пристатейные ссылки: 46
Цитируется в публикациях: 8
Modern microprocessor built from complementary carbon nanotube transistors
Hills G., Lau C., Wright A., Fuller S., Bishop M.D., Srimani T., Kanhaiya P., Ho R., Amer A., Stein Y., Murphy D., Arvind, Chandrakasan A., Shulaker M.M.
Q1 Nature 2019 цитирований: 326
Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing
Tang D., Kvashnin D.G., Cretu O., Nemoto Y., Uesugi F., Takeguchi M., Zhou X., Hsia F., Liu C., Sorokin P.B., Kawamoto N., Mitome M., Cheng H., Golberg D., Bando Y.
Q1 Ultramicroscopy 2018 цитирований: 7
Open Access
Open access
Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes
Jiang S., Hou P., Chen M., Wang B., Sun D., Tang D., Jin Q., Guo Q., Zhang D., Du J., Tai K., Tan J., Kauppinen E.I., Liu C., Cheng H.
Q1 Science advances 2018 цитирований: 132
Open Access
Open access
Carbon nanotube transistors scaled to a 40-nanometer footprint
Cao Q., Tersoff J., Farmer D.B., Zhu Y., Han S.
Q1 Science 2017 цитирований: 151
Open Access
Open access
Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts
Zhang S., Kang L., Wang X., Tong L., Yang L., Wang Z., Qi K., Deng S., Li Q., Bai X., Ding F., Zhang J.
Q1 Nature 2017 цитирований: 265
Scaling carbon nanotube complementary transistors to 5-nm gate lengths
Qiu C., Zhang Z., Xiao M., Yang Y., Zhong D., Peng L.
Q1 Science 2017 цитирований: 400
Open Access
Open access
A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties
Chen G., Davis R.C., Futaba D.N., Sakurai S., Kobashi K., Yumura M., Hata K.
Q1 Nanoscale 2016 цитирований: 50
Wave Packet Dynamical Calculations for Carbon Nanostructures
Márk G.I., Vancsó P., Biró L.P., Kvashnin D.G., Chernozatonskii L.A., Chaves A., Rakhimov K.Y., Lambin P.
Q4 NATO Science for Peace and Security Series B: Physics and Biophysics 2016 цитирований: 2
Controlled synthesis of single-chirality carbon nanotubes
Sanchez-Valencia J.R., Dienel T., Gröning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., Fasel R.
Q1 Nature 2014 цитирований: 442
Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
Yang F., Wang X., Zhang D., Yang J., Luo D., Xu Z., Wei J., Wang J., Xu Z., Peng F., Li X., Li R., Li Y., Li M., Bai X., et. al.
Q1 Nature 2014 цитирований: 584
Extensive Energy Landscape Sampling of Nanotube End-Caps Reveals No Chiral-Angle Bias for Their Nucleation
Penev E.S., Artyukhov V.I., Yakobson B.I.
Q1 ACS Nano 2014 цитирований: 30
Carbon nanotube computer
Shulaker M.M., Hills G., Patil N., Wei H., Chen H., Wong H.-., Mitra S.
Q1 Nature 2013 цитирований: 756
Anisotropic dynamics of charge carriers in graphene
Márk G.I., Vancsó P., Hwang C., Lambin P., Biró L.P.
Q1 Physical Review B 2012 цитирований: 19
Sub-10 nm Carbon Nanotube Transistor
Franklin A.D., Luisier M., Han S., Tulevski G., Breslin C.M., Gignac L., Lundstrom M.S., Haensch W.
Q1 Nano Letters 2012 цитирований: 591
Length scaling of carbon nanotube transistors
Franklin A.D., Chen Z.
Q1 Nature Nanotechnology 2010 цитирований: 312
Метрики

Поделиться

Цитировать
ГОСТ |
Цитировать
1. Tang D.-M. и др. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration // Science. 2021. Т. 374. № 6575. С. 1616–1620.
RIS |
Цитировать

TY - JOUR

DO - 10.1126/science.abi8884

UR - http://dx.doi.org/10.1126/science.abi8884

TI - Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration

T2 - Science

AU - Tang, Dai-Ming

AU - Erohin, Sergey V.

AU - Kvashnin, Dmitry G.

AU - Demin, Victor A.

AU - Cretu, Ovidiu

AU - Jiang, Song

AU - Zhang, Lili

AU - Hou, Peng-Xiang

AU - Chen, Guohai

AU - Futaba, Don N.

AU - Zheng, Yongjia

AU - Xiang, Rong

AU - Zhou, Xin

AU - Hsia, Feng-Chun

AU - Kawamoto, Naoyuki

AU - Mitome, Masanori

AU - Nemoto, Yoshihiro

AU - Uesugi, Fumihiko

AU - Takeguchi, Masaki

AU - Maruyama, Shigeo

AU - Cheng, Hui-Ming

AU - Bando, Yoshio

AU - Liu, Chang

AU - Sorokin, Pavel B.

AU - Golberg, Dmitri

PY - 2021

DA - 2021/12/24

PB - American Association for the Advancement of Science (AAAS)

SP - 1616-1620

IS - 6575

VL - 374

SN - 0036-8075

SN - 1095-9203

ER -

BibTex |
Цитировать

@article{Tang_2021,

doi = {10.1126/science.abi8884},

url = {https://doi.org/10.1126%2Fscience.abi8884},

year = 2021,

month = {dec},

publisher = {American Association for the Advancement of Science ({AAAS})},

volume = {374},

number = {6575},

pages = {1616--1620},

author = {Dai-Ming Tang and Sergey V. Erohin and Dmitry G. Kvashnin and Victor A. Demin and Ovidiu Cretu and Song Jiang and Lili Zhang and Peng-Xiang Hou and Guohai Chen and Don N. Futaba and Yongjia Zheng and Rong Xiang and Xin Zhou and Feng-Chun Hsia and Naoyuki Kawamoto and Masanori Mitome and Yoshihiro Nemoto and Fumihiko Uesugi and Masaki Takeguchi and Shigeo Maruyama and Hui-Ming Cheng and Yoshio Bando and Chang Liu and Pavel B. Sorokin and Dmitri Golberg},

title = {Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration},

journal = {Science}

}

MLA
Цитировать
Tang, Dai-Ming et al. “Semiconductor Nanochannels in Metallic Carbon Nanotubes by Thermomechanical Chirality Alteration.” Science 374.6575 (2021): 1616–1620. Crossref. Web.