Open Access
Open access
PLoS ONE, volume 20, issue 1, pages e0313738

Identification of key regulators in pancreatic ductal adenocarcinoma using network theoretical approach

Publication typeJournal Article
Publication date2025-01-27
Journal: PLoS ONE
scimago Q1
wos Q1
SJR0.839
CiteScore6.2
Impact factor2.9
ISSN19326203
Abstract

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease’s development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network. To address this, we examined the gene expression profile of PDAC and compared it with that of healthy controls, identifying differentially expressed genes (DEGs). These DEGs formed the basis for constructing the PDAC protein interaction network, and their network topological properties were calculated. It was found that the PDAC network self-organizes into a scale-free fractal state with weakly hierarchical organization. Newman and Girvan’s algorithm (leading eigenvector (LEV) method) of community detection enumerated four communities leading to at least one motif defined by G (3,3). Our analysis revealed 33 key regulators were predominantly enriched in neuroactive ligand-receptor interaction, Cell adhesion molecules, Leukocyte transendothelial migration pathways; positive regulation of cell proliferation, positive regulation of protein kinase B signaling biological functions; G-protein beta-subunit binding, receptor binding molecular functions etc. Transcription Factor and mi-RNA of the key regulators were obtained. Recognizing the therapeutic potential and biomarker significance of PDAC Key regulators, we also identified approved drugs for specific genes. However, it is imperative to subject Key regulators to experimental validation to establish their efficacy in the context of PDAC.

Król W., Machelak W., Zielińska M.
2023-09-01 citations by CoLab: 5 Abstract  
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles and the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the liver or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Vasic I., Libby A.R., Maslan A., Bulger E.A., Zalazar D., Krakora Compagno M.Z., Streets A., Tomoda K., Yamanaka S., McDevitt T.C.
Developmental Cell scimago Q1 wos Q1
2023-08-01 citations by CoLab: 9 Abstract  
Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs). Disrupting tight junctions via knockdown (KD) of the scaffolding tight junction protein-1 (TJP1, also known as ZO1) allows BMP4 to robustly and ubiquitously activate pSMAD1/5 signaling over time, resulting in loss of the patterning phenotype and marked differentiation bias of pluripotent stem cells to primordial germ cell-like cells (PGCLCs). These findings give important insights into how signaling events are regulated and lead to spatial emergence of diverse cell types in vitro.
Guo K., Zhao Y., Cao Y., Li Y., Yang M., Tian Y., Dai J., Song L., Ren S., Wang Z.
Frontiers in Genetics scimago Q2 wos Q2 Open Access
2023-07-12 citations by CoLab: 3 PDF Abstract  
Background: Pancreatic ductal adenocarcinoma (PDAC) develops rapidly and has a poor prognosis. It has been demonstrated that pancreatic ductal adenocarcinoma and chronic pancreatitis (CP) have a close connection. However, the underlying mechanisms for chronic pancreatitis transforming into pancreatic ductal adenocarcinoma are still unclear. The purpose of this study was to identify real hub genes in the development of chronic pancreatitis and pancreatic ductal adenocarcinoma.Methods: RNA-seq data of chronic pancreatitis and pancreatic ductal adenocarcinoma were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between chronic pancreatitis and pancreatic ductal adenocarcinoma. GEO2R and a Venn diagram were used to identify differentially expressed genes. Then visualized networks were constructed with ClueGO, and modules of PPI network were calculated by MCODE plugin. Further validation of the results was carried out in two additional cohorts. Analyses of CEL-coexpressed genes and regulators including miRNAs and transcription factors were performed by using the corresponding online web tool. Finally, the influence of CEL in the tumor immune microenvironment (TIME) was assessed by immune contextual analysis.Results: With the help of WGCNA and GEO2R, four co-expression modules and six hub genes were identified, respectively. ClueGO enrichment analysis and MCODE cluster analysis revealed that the dysfunctional transport of nutrients and trace elements might contribute to chronic pancreatitis and pancreatic ductal adenocarcinoma development. The real hub gene CEL was identified with a markedly low expression in pancreatic ductal adenocarcinoma in external validation sets. According to the miRNA-gene network construction, hsa-miR-198 may be the key miRNA. A strong correlation exists between CEL and TIME after an evaluation of the influence of CEL in TIME.Conclusion: Our study revealed the dysfunctional transport of nutrients and trace elements may be common pathogenesis of pancreatic ductal adenocarcinoma and chronic pancreatitis. Examination on these common pathways and real hub genes may shed light on the underlying mechanism.
Rodak O., Mrozowska M., Rusak A., Gomułkiewicz A., Piotrowska A., Olbromski M., Podhorska-Okołów M., Ugorski M., Dzięgiel P.
2023-07-11 citations by CoLab: 4 PDF Abstract  
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Biagi J.J., Cosby R., Bahl M., Elfiki T., Goodwin R., Hallet J., Hirmiz K., Mahmud A.
Current Oncology scimago Q2 wos Q2 Open Access
2023-07-08 citations by CoLab: 6 PDF Abstract  
Pancreatic cancer is the seventh leading cause of cancer deaths worldwide, accounting for 4.7% of all cancer deaths, and is expected to climb significantly over the next decade. The purpose of this systematic review and guidance document was to synthesize the evidence surrounding the role of adjuvant treatment (chemotherapy and chemoradiation therapy [CRT], and stereotactic body radiation therapy [SBRT]) in resected pancreatic ductal adenocarcinoma (PDAC). Systematic literature searches of MEDLINE, EMBASE, and 11 guideline databases were conducted. Both direct and indirect comparisons indicate adjuvant chemotherapy offers a survival advantage over surgery alone. The optimal regimens recommended are mFOLFIRINOX with alternative options of gemcitabine plus capecitabine, gemcitabine alone, or S-1 (which is not available in North America). Trials comparing a CRT strategy to modern chemotherapy regimens are lacking. However, current evidence demonstrates that the addition of CRT to chemotherapy does not result in a survival advantage over chemotherapy alone and is therefore not recommended. Trials evaluating SBRT in PDAC are also lacking. SBRT should only be used within a clinical trial or multi-institutional registry.
Zhao F., Yang D., Xu T., He J., Guo J., Li X.
Frontiers in Oncology scimago Q2 wos Q2 Open Access
2023-07-03 citations by CoLab: 4 PDF Abstract  
Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic malignancy with unique clinical, molecular, and morphologic features. The long-term survival of patients with PACC is substantially better than that of patients with ductal adenocarcinoma of the pancreas. Surgical resection is considered the first choice for treatment; however, there is no standard treatment option for patients with inoperable disease. The patient with metastatic PACC reported herein survived for more than 5 years with various treatments including chemotherapy, radiotherapy, antiangiogenic therapy and combined immunotherapy.
Lin C., Chen Y., Zhang F., Zhu P., Yu L., Chen W.
Gut Pathogens scimago Q1 wos Q2 Open Access
2023-05-31 citations by CoLab: 8 PDF Abstract  
Abstract Background Cancer-associated fibroblasts (CAFs) are essential stromal components in the tumor microenvironment of hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) infection induces pathological changes such as liver fibrosis/cirrhosis and HCC. The aim of this research was to explore the novel mediators of CAFs to modulate HBV cirrhosis-HCC progression. Methods The single-cell transcriptome data of HCC were divided into subsets, and the significant subset related to fibrotic cells, along with biological function, and clinical information of HCC was revealed by integrated data analyses. The cell communication, cells communicated weight analysis of signaling pathways, and key genes in signaling pathways analysis of significant CAFs subclasses were conducted to discover the novel gene of CAFs. Bioinformatics, vitro and HBV transfection assays were used to verify the novel gene is an important target for promoting the progression HBV cirrhosis-HCC progression. Results Fibroblasts derived from HCC single-cell data could be separated into three cell subclasses (CAF0-2), of which CAF2 was associated with the HCC clinical information. Fibroblasts have opposite developmental trajectories to immune B cells and CD8 + T cells. CAF0-2 had strong interaction with B cells and CD8 + T cells, especially CAF2 had the highest interaction frequency and weight with B cells and CD8 + T cells. Moreover, PTN participated in CAF2-related pathways involved in the regulation of cell communication, and the interactions among CAF2 and PTN contributed the most to B cells and CD8 + T cells. Furthermore, the genes of PTN, SDC1, and NCL from PTN signaling were highest expression in CAF2, B cells, and CD8 + T cells, respectively, and the interaction of PTN- SDC1 and PTN- NCL contributed most to the interaction of CAF2- B cells and CAF2-CD8 + T cells. Bioinformatics and vitro experiments confirm PTN was upregulated in HCC and promoted the proliferation of tumor cells, and HBV infection could initiate PTN to perform cirrhosis-HCC progression. Conclusion Our findings revealed CAF was associated with hepatocarcinogenesis, and the functional importance of B cells and CD8 + T cells in modulating CAF in HCC. Importantly, PTN maybe a novel mediator of CAF to mediate HBV cirrhosis-HCC progression.
Sarfraz H., Saha A., Jhaveri K., Kim D.W.
Current Oncology scimago Q2 wos Q2 Open Access
2023-05-26 citations by CoLab: 6 PDF Abstract  
Background: This review aims to describe the systemic treatment options for pancreatic ductal adenocarcinoma and includes a summary of the current treatments as well as the ongoing clinical trials which may be efficacious in the treatment of this aggressive malignancy. Methods: A literature review was performed using MEDLINE/PubMed between August 1996 and February 2023. The reviewed studies are categorized into these categories: current standard of care treatments, targeted therapies, immunotherapy and clinical trials. The current treatment modality for the treatment of advanced pancreatic cancer is mainly systemic chemotherapy. Results: The introduction of polychemotherapy regimens including gemcitabine/nab-paclitaxel and FOLFIRINOX (oxaliplatin, irinotecan, folinic acid and fluorouracil) has improved the clinical outcome of advanced pancreatic cancer. For further improvement in clinical outcomes, several novel approaches have been extensively studied in pancreatic cancer. The review discusses the current standard chemotherapy regimen and the novel treatment options in the field. Conclusions: While there are novel treatments being explored for metastatic pancreatic, it remains a debilitating and aggressive disease with high mortality that warrants continued efforts to advance therapeutic options.
Dixit G., Gonzalez‐Bosquet J., Skurski J., Devor E.J., Dickerson E.B., Nothnick W.B., Issuree P.D., Leslie K.K., Maretzky T.
2023-05-11 citations by CoLab: 10 PDF Abstract  
AbstractBackgroundMutations in the receptor tyrosine kinase gene fibroblast growth factor receptor 2 (FGFR2) occur at a high frequency in endometrial cancer (EC) and have been linked to advanced and recurrent disease. However, little is known about how these mutations drive carcinogenesis.MethodsDifferential transcriptomic analysis and two‐step quantitative real‐time PCR (qRT‐PCR) assays were applied to identify genes differentially expressed in two cohorts of EC patients carrying mutations in the FGFR2 gene as well as in EC cells harbouring mutations in the FGFR2. Candidate genes and target signalling pathways were investigated by qRT‐PCR assays, immunohistochemistry and bioinformatics analysis. The functional roles of differently regulated genes were analysed using in vitro and in vivo experiments, including 3D‐orthotypic co‐culture systems, cell proliferation and migration protocols, as well as colony and focus formation assays together with murine xenograft tumour models. The molecular mechanisms were examined using CRISPR/Cas9‐based loss‐of‐function and pharmacological approaches as well as luciferase reporter techniques, cell‐based ectodomain shedding assays and bioinformatics analysis.ResultsWe show that common FGFR2 mutations significantly enhance the sensitivity to FGF7‐mediated activation of a disintegrin and metalloprotease (ADAM)17 and subsequent transactivation of the epidermal growth factor receptor (EGFR). We further show that FGFR2 mutants trigger the activation of ADAM10‐mediated Notch signalling in an ADAM17‐dependent manner, highlighting for the first time an intimate cooperation between EGFR and Notch pathways in EC. Differential transcriptomic analysis in EC cells in a cohort of patients carrying mutations in the FGFR2 gene identified a strong association between FGFR2 mutations and increased expression of members of the Notch pathway and ErbB receptor family. Notably, FGFR2 mutants are not constitutively active but require FGF7 stimulation to reprogram Notch and EGFR pathway components, resulting in ADAM17‐dependent oncogenic growth.ConclusionsThese findings highlight a pivotal role of ADAM17 in the pathogenesis of EC and provide a compelling rationale for targeting ADAM17 protease activity in FGFR2‐driven cancers.
Chan S., Wang X., Wang Z., Du Y., Zuo X., Chen J., Sun R., Zhang Q., Lin L., Yang Y., Yu Z., Zhao H., Zhang H., Chen W.
2023-05-04 citations by CoLab: 13
Liu Y., Wu X., Feng Y., Jiang Q., Zhang S., Wang Q., Yang A.
2023-04-28 citations by CoLab: 3 PDF Abstract  
Background. BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S) helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown. Methods. BRIP1 expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation (CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1 correlations with tumor microenvironment (TME), immune infiltration, immune-related genes, tumor mutation burden (TMB), microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer. Results. Differential analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplification was the most common type. BRIP1 expression had a significant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, respectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infiltrating cells, immune-related genes, TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confirmed. Conclusions. Our study indicates that BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-cancer.
Zheng Z., Luan N., Tu K., Liu F., Wang J., Sun J.
Frontiers in Pharmacology scimago Q1 wos Q1 Open Access
2023-03-30 citations by CoLab: 6 PDF Abstract  
Despite the high mutation frequencies of KRAS, NRAS, and BRAF in colorectal cancer (CRC), there are no effective and reliable inhibitors for these biomarkers. Protocadherin-7 (PCDH7) is regarded as a potentially targetable surface molecule in cancer cells and plays an important role in their proliferation, metastasis, and drug resistance. However, the roles and underlying mechanisms of PCDH7 in CRC remain unclear. In the current study, we found that different colorectal cancer cells expressed PCDH7 over a wide range. The levels of PCDH7 expression were positively associated with cell proliferation and drug resistance in CRC cells but negatively correlated with the potential for cell migration and invasion. Our data indicated that PCDH7 mediated the resistance of CRC cells to ABT-263 (a small-molecule Bcl-2 inhibitor that induces apoptosis) by inhibiting cell apoptosis, which was supported by the downregulation of caspase-3, caspase-9, and PARP cleavage. We found that PCDH7 effectively promoted Mcl-1 expression at both mRNA and protein levels. Furthermore, PCDH7 activated the Wnt signaling pathway, which was confirmed by the increase in β-catenin and c-Myc expression. Finally, and notably, S63845, a novel Mcl-1 inhibitor, not only effectively attenuated the inhibitory effect of PCDH7 on cell apoptosis induced by ABT-263 in vitro but also sensitized PCDH7-overexpressed CRC cell-derived xenografts to ABT-263 in vivo. Taken together, although PCDH7 inhibited the migration and invasion of CRC cells, it could facilitate the development of drug resistance in colorectal cancer cells by positively modulating Mcl-1 expression. The application of the Mcl-1 inhibitor S63845 could be a potential strategy for CRC chemotherapy, especially in CRC with high levels of PCDH7.
Hashimoto Y., Greene C., Munnich A., Campbell M.
Fluids and Barriers of the CNS scimago Q1 wos Q1 Open Access
2023-03-28 citations by CoLab: 51 PDF Abstract  
AbstractThe CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood–brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Tran K., Prall O.W., Mitchell C., Chou A., Gill A.J., Grimmond S.M., Kong G., Kiernan G., Torche C., Lipton L., Thomson B., Ko H.
2023-03-01 citations by CoLab: 2 Abstract  
Pancreatic acinar cell carcinoma (ACC) is a rare pancreatic neoplasm, often eluding clinicians because of the lack of diagnosis awareness and expert knowledge regarding clinical, radiological and pathological characteristics of ACC. Main differential diagnoses include pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET) and accurate diagnosis is crucial to ensure optimal treatment and outcomes. This case of a 58-year old male illustrates the correlation between clinical, imaging, molecular histopathological and whole genome and transcriptome profiling that was required to diagnose and guide treatment of this complex pancreatic ACC.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?