Open Access
Open access
том 12 издание 1 страницы 1

The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study

Eun Jeong Gong 1, 2, 3
Chang Seok Bang 1, 2, 3
Jae Jun Lee 3, 4
Jonghyung Park 5
Eunsil Kim 5
Subeen Kim 5
Minjae Kimm 6
Seoung‐Ho Choi 7
Тип публикацииJournal Article
Дата публикации2024-12-24
scimago Q2
wos Q2
БС1
SJR0.735
CiteScore5.3
Impact factor3.7
ISSN23065354
Краткое описание

Background: The large language model (LLM) has the potential to be applied to clinical practice. However, there has been scarce study on this in the field of gastroenterology. Aim: This study explores the potential clinical utility of two LLMs in the field of gastroenterology: a customized GPT model and a conventional GPT-4o, an advanced LLM capable of retrieval-augmented generation (RAG). Method: We established a customized GPT with the BM25 algorithm using Open AI’s GPT-4o model, which allows it to produce responses in the context of specific documents including textbooks of internal medicine (in English) and gastroenterology (in Korean). Also, we prepared a conventional ChatGPT 4o (accessed on 16 October 2024) access. The benchmark (written in Korean) consisted of 15 clinical questions developed by four clinical experts, representing typical questions for medical students. The two LLMs, a gastroenterology fellow, and an expert gastroenterologist were tested to assess their performance. Results: While the customized LLM correctly answered 8 out of 15 questions, the fellow answered 10 correctly. When the standardized Korean medical terms were replaced with English terminology, the LLM’s performance improved, answering two additional knowledge-based questions correctly, matching the fellow’s score. However, judgment-based questions remained a challenge for the model. Even with the implementation of ‘Chain of Thought’ prompt engineering, the customized GPT did not achieve improved reasoning. Conventional GPT-4o achieved the highest score among the AI models (14/15). Although both models performed slightly below the expert gastroenterologist’s level (15/15), they show promising potential for clinical applications (scores comparable with or higher than that of the gastroenterology fellow). Conclusions: LLMs could be utilized to assist with specialized tasks such as patient counseling. However, RAG capabilities by enabling real-time retrieval of external data not included in the training dataset, appear essential for managing complex, specialized content, and clinician oversight will remain crucial to ensure safe and effective use in clinical practice.

Найдено 
Найдено 

Топ-30

Журналы

1
Computers and Education Artificial Intelligence
1 публикация, 16.67%
Nature Reviews Gastroenterology and Hepatology
1 публикация, 16.67%
World Journal of Gastroenterology
1 публикация, 16.67%
Journal of Medical Internet Research
1 публикация, 16.67%
Bioengineering
1 публикация, 16.67%
Frontiers in Immunology
1 публикация, 16.67%
1

Издатели

1
Elsevier
1 публикация, 16.67%
Springer Nature
1 публикация, 16.67%
Baishideng Publishing Group
1 публикация, 16.67%
JMIR Publications
1 публикация, 16.67%
MDPI
1 публикация, 16.67%
Frontiers Media S.A.
1 публикация, 16.67%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Gong E. J. et al. The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study // Bioengineering. 2024. Vol. 12. No. 1. p. 1.
ГОСТ со всеми авторами (до 50) Скопировать
Gong E. J., Bang C. S., Lee J., Park J., Kim E., Kim S., Kimm M., Choi S. The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study // Bioengineering. 2024. Vol. 12. No. 1. p. 1.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/bioengineering12010001
UR - https://www.mdpi.com/2306-5354/12/1/1
TI - The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study
T2 - Bioengineering
AU - Gong, Eun Jeong
AU - Bang, Chang Seok
AU - Lee, Jae Jun
AU - Park, Jonghyung
AU - Kim, Eunsil
AU - Kim, Subeen
AU - Kimm, Minjae
AU - Choi, Seoung‐Ho
PY - 2024
DA - 2024/12/24
PB - MDPI
SP - 1
IS - 1
VL - 12
SN - 2306-5354
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Gong,
author = {Eun Jeong Gong and Chang Seok Bang and Jae Jun Lee and Jonghyung Park and Eunsil Kim and Subeen Kim and Minjae Kimm and Seoung‐Ho Choi},
title = {The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study},
journal = {Bioengineering},
year = {2024},
volume = {12},
publisher = {MDPI},
month = {dec},
url = {https://www.mdpi.com/2306-5354/12/1/1},
number = {1},
pages = {1},
doi = {10.3390/bioengineering12010001}
}
MLA
Цитировать
Gong, Eun Jeong, et al. “The Potential Clinical Utility of the Customized Large Language Model in Gastroenterology: A Pilot Study.” Bioengineering, vol. 12, no. 1, Dec. 2024, p. 1. https://www.mdpi.com/2306-5354/12/1/1.