The Journal of Island Studies, volume 25, issue 2, pages 111-128

Traditional Cousins and Ingredients in Okinoerabu Island: Chemistry and Pharmacology of Bioactivities

Makiko Washiyama 1
1
 
ボタニコレージュ・ドゥ エーグルマキ
Publication typeJournal Article
Publication date2024-09-30
SJR
CiteScore
Impact factor
ISSN18847013, 18847838
Cremonini E., Da Silva L.M., Lanzi C.R., Marino M., Iglesias D.E., Oteiza P.I.
Biochemical Pharmacology scimago Q1 wos Q1
2024-04-01 citations by CoLab: 5 Abstract  
High-fat diet (HFD) consumption and excess nutrient availability can cause alterations in mitochondrial function and dynamics. We previously showed that anthocyanins (AC) decreased HFD-induced body weight gain and fat deposition. This study investigated: i) the capacity of AC to mitigate HFD-induced alterations in mitochondrial dynamics, biogenesis, and thermogenesis in mouse subcutaneous white adipose tissue (sWAT), and ii) the underlying mechanisms of action of cyanidin-3-O-glucoside (C3G), delphinidin-3-O-glucoside (D3G), and their gut metabolites on mitochondria function/dynamics in 3T3-L1 adipocytes treated with palmitate. Mice were fed control or HFD diets, added or not with 40 mg AC/kg body weight (BW). Compared to control and AC-supplemented mice, HFD-fed mice had fewer sWAT mitochondria that presented alterations of their architecture. AC supplementation prevented HFD-induced decrease of proteins involved in mitochondria biogenesis (PPARγ, PRDM16 and PGC-1α), and thermogenesis (UCP-1), and decreased AMPK phosphorylation. AC supplementation also restored the alterations in sWAT mitochondrial dynamics (Drp-1, OPA1, MNF-2, and Fis-1) and mitophagy (BNIP3L/NIX) caused by HFD consumption. In mature 3T3-L1, C3G, D3G, and their metabolites protocatechuic acid (PCA), 4-hydroxybenzaldehyde (HB), and gallic acid (GA) differentially affected palmitate-mediated decreased cAMP, PKA, AMPK, and SIRT-1 signaling pathways. C3G, D3G, and metabolites also prevented palmitate-mediated decreased expression of PPARγ, PRDM16, PGC-1α, and UCP1. Results suggest that consumption of select AC, i.e. cyanidin and delphinidin, could promote sWAT mitochondriogenesis and improve mitochondria dynamics in the context of HFD/obesity-induced dysmetabolism in part by regulating PKA, AMPK, and SIRT-1 signaling pathways.
Domínguez-Avila J.A.
Foods scimago Q1 wos Q1 Open Access
2023-11-22 citations by CoLab: 6 PDF Abstract  
Consuming foods of vegetable origin has been shown to exert multiple health-related effects, many of them attributed to their phenolic compounds. These molecules are known for being bioactive across multiple cells and organs, with documented changes in gene expression being commonly reported. Nuclear receptors are signal transducers capable of regulating gene expression in response to endogenous and/or exogenous ligands. Liver X receptor (LXR) and retinoid X receptor (RXR) are two important nuclear receptors that can be acted on by phenolic compounds, thereby modifying gene expression and potentially exerting numerous subsequent bioactivities. The present work summarizes recent evidence of the effects of the phenolic compounds that are exerted by targeting LXR and/or RXR. The data show that, when LXR is being targeted, changes in lipid metabolism are commonly observed, due to its ability to regulate genes relevant to this process. The effects vary widely when RXR is the target since it is involved in processes like cell proliferation, vitamin D metabolism, and multiple others by forming heterodimers with other transcription factors that regulate said processes. The evidence therefore shows that phenolic compounds can exert multiple bioactivities, with a mechanism of action based, at least in part, on their ability to modulate the cell at the molecular level by acting on nuclear receptors. The data point to a promising and novel area of study that links diet and health, although various unknowns justify further experimentation to reveal the precise way in which a given phenolic can interact with a nuclear receptor.
Jiayao C., Jiaoling W., Chengyu H., Guixiang W., Linquan Z.
2023-11-01 citations by CoLab: 6 Abstract  
The endogenous cannabinoid system (ECS) is involved in the regulation of a variety of physiological activities in the body, such as metabolism and energy uptake, and cannabinoid receptor 2 (CNR2) is one of these receptors that is predominantly distributed in the periphery. β-caryophyllene (BCP) is an agonist of CNR2 which is known to possess pharmacological activities such as anti-inflammatory and antioxidant properties. In this study, we wanted to investigate whether BCP possesses pharmacological effects on obese mice and its mechanism.Reversed feeding rhythm, propylthiouracil was delivered intraperitoneally, and BCP was gavaged once daily for four weeks to establish a hyperlipidemic obese mouse model. A glucose tolerance test, lipid level measurements, liver, peritoneal, and subcutaneous fat removal, HE and Oil Red O staining of the liver, and immunohistochemistry (IHC) staining with an anti-CNR2 antibody were all carried out. The liver was examined using tools like GO and KEGG databases for differentially expressed genes and signaling pathways linked to medication effectiveness.BCP had significant effects on weight reduction and improvement of dyslipidemia. What's more, it significantly reduced body fat percentage, improved steatosis and ballooning of liver cells, and reduced fat accumulation, while inhibiting the proliferation of peri-abdominal adipocytes. BCP exerted its effects to improve dyslipidemia and reduce body weight probably through circadian regulation and cholesterol metabolic pathways. Finally, and its efficacy in improving dyslipidemia and reducing body weight may be mainly through activating CNR2, activating SIRT1/PGC-1α/PPARγ and SIRT1/AMPK pathways.BCP activates the CNR2, SIRT1/PGC-1α/PPARγ signaling pathway, and SIRT1/AMPK signaling pathway to exert dyslipidemia-improving and weight-loss effects.
Abo-Zaid O.A., Moawed F.S., Ismail E.S., Farrag M.A.
BMC pharmacology & toxicology scimago Q2 wos Q2 Open Access
2023-05-12 citations by CoLab: 13 PDF Abstract  
AbstractNonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder. The naturally occurring phytosterol; β-sitosterol has antiobesogenic and anti-diabetic properties. The purpose of this study was to explore the role of β-sitosterol in preventing hepatic steatosis induced by a high-fat diet (HFD) in rats. In the current study, to induce NAFLD in the female Wister rats, an HFD was administered to them for 8 weeks. The pathogenic severity of steatosis in rats receiving an HFD diet was dramatically decreased by oral administration of β-sitosterol. After administering β-sitosterol to HFD-induced steatosis for three weeks, several oxidative stress-related markers were then assessed. We showed that β-sitosterol reduced steatosis and the serum levels of triglycerides, transaminases (ALT and AST) and inflammatory markers (IL-1β and iNOS) compared to HFD-fed rats. Additionally, β-sitosterol reduced endoplasmic reticulum stress by preventing the overexpression of inositol-requiring enzyme-1 (IRE-1α), X-box binding protein 1(sXBP1) and C/EBP homologous protein (CHOP) genes which, showing a function in the homeostatic regulation of protein folding. Also, it was found that the expression of the lipogenic factors; peroxisome proliferator-activated receptor (PPAR-α), sterol regulatory element binding protein (SREBP-1c) and carnitine palmitoyltransferase-1(CPT-1), which are involved in the regulation of the fatty acid oxidation process, may be regulated by β-sitosterol. It can be concluded that β-sitosterol may prevent NAFLD by reducing oxidative stress, endoplasmic reticulum stress and inflammatory responses, which supports the possibility of using β-sitosterol as an alternative therapy for NAFLD. Together, β-sitosterol may be an option for NAFLD prevention.
Wei Q., Zhang Y.
Molecules scimago Q1 wos Q2 Open Access
2023-03-19 citations by CoLab: 6 PDF Abstract  
The composition of volatile oils of the leaf and stem of Farfugium japonicum (L.) Kitamura were prepared by supercritical fluid extraction (SFE)-CO2. A total 47 and 40 compounds were identified by GC/MS analysis, respectively, and only 13 compounds coexisted. The main constituent types in the leaf oil included alcohols (34.1%), hydrocarbons (24.1%), terpenoids (16.2%), benzenes (7.5%), and fatty acids (4.9%). In the stem oil, the constituent types chiefly included benzenes (18.8%), ketones (13.9%), terpenoids (17.0%), fatty acids (8.8%), phenolics (8.7%), steroids (8.6%), hydrocarbons (8.0%), and esters (5.7%). The predominant volatile compounds in the stem were 2-(1-cyclopent-1-enyl-1-methylethyl) cyclopentanone (11.7%), 1,2,3,4,5,6,7,8-octahydro- 9,10-dimethyl-anthracene (8.4%), 5-heptylresorcinol (6.5%), and α-sitosterol (5.2%). Those in the leaf mainly included (E)-3-hexen-1-ol (13.7%) and (Z)-3-hexen-1-ol (14.0%). This demonstrated a significant difference in the composition of both oils. Further study showed that stem oils demonstrated the highest DPPH (1,1-diphenyl-2-pinylhydrazyl) and ·OH free radical scavenging capacities at IC50 values of 9.22 and 0.90 mg/mL, respectively. In addition, they demonstrated the strongest antibacterial capacity against the Gram-positive bacteria methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at a minimum inhibitory concentration (MIC) of 0.16 mg/mL. This could be due to the SFE-CO2 extraction and the high accumulation of benzenes, terpenoids, and phenolics in the stem. In particular, the monoterpenes presented in terpenoids could play a special role in these findings.
Yun Z., Zou Z., Sun S., Che H.
Journal of Food Biochemistry scimago Q1 wos Q2
2022-12-01 citations by CoLab: 13 PDF
Hermanto F.E., Warsito W., Rifa’i M., Widodo N.
2022-11-28 citations by CoLab: 6
Yang T., Yu M., Wu Y., Hong C., Chen C., Chan K., Wang C.
Nutrients scimago Q1 wos Q1 Open Access
2022-11-14 citations by CoLab: 15 PDF Abstract  
Mulberry leaf (Morus alba L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis. We applied an in vitro model of HepG2 cells induced by glucolipotoxicity and evaluated the effects of MLE and its major components nCGA, Crp, and CGA. The results showed that MLE and nCGA reduced liver fat accumulation by inhibiting SREBP-1/FASN, SREBP-2/HMG-CoAR, and activating PPARα/CPT-1. Additionally, MLE and nCGA decreased inflammatory responses associated with NF-κB, TNF-α, and IL-6 to alleviate steatohepatitis. Furthermore, we showed that MLE and nCGA exerted anti-glucolipotoxicity effects by downregulating miR-34a, thus activating SIRT1/AMPK signaling, and subsequently suppressing hepatic lipid accumulation.
Jeon Y.A., Chung S.W., Kim S.C., Lee Y.J.
Foods scimago Q1 wos Q1 Open Access
2022-10-14 citations by CoLab: 16 PDF Abstract  
Antioxidant and anti-inflammatory properties of papaya (Carica papaya) fruits were evaluated to provide comprehensive information associated with the bioactive compounds. ‘Tainung No. 2’ papaya fruits, cultivated in a greenhouse, Korea, were harvested at unripe and ripe stages and then divided into seed and peel-pulp. Total phenolic and flavonoid contents were determined using spectrophotometry, and individual phenolic compounds were relatively quantified by HPLC-DAD and fifteen standards. Antioxidant activities were measured using four assays: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activities, inhibition of lipid peroxidation, and FRAP (ferric reducing antioxidant power). Anti-inflammatory activities were measured by the regulation of NF-κB signaling pathways with the measurements of ROS and NO productions as the degree of oxidative stress. Total phenol contents increased in seed and peel–pulp extracts during ripening; flavonoid contents increased only in seed extracts. Total phenolic contents were associated with ABTS radical scavenging activity and FRAP. Of fifteen phenolic compounds, chlorogenic acid, cynarin, eupatorine, neochlorogenic acid, and vicenin II were identified among papaya extracts. ROS and NO productions were inhibited in papaya extracts. Especially, NO productions were inhibited higher in ripe seed extracts than in other extracts, which would be associated with the suppression of NF-κB activation and iNOS expression. These results suggest that papaya fruit extracts, including seeds, peels, and pulps, could be potential raw materials for functional foods.
Mohri S., Takahashi H., Sakai M., Waki N., Takahashi S., Aizawa K., Suganuma H., Ara T., Sugawara T., Shibata D., Matsumura Y., Goto T., Kawada T.
PLoS ONE scimago Q1 wos Q1 Open Access
2022-07-01 citations by CoLab: 6 PDF Abstract  
Adiponectin, an adipokine, regulates glucose metabolism and insulin sensitivity through the adiponectin receptor (AdipoR). In this study, we searched for metabolites that activate the adiponectin signaling pathway from tomato (Solanum lycopersicu). Metabolites of mature tomato were separated into 55 fractions by liquid chromatography, and then each fraction was examined using the phosphorylation assay of AMP-protein kinase (AMPK) in C2C12 myotubes and in AdipoR-knockdown cells by small interfering RNA (siRNA). Several fractions showed AMPK phosphorylation in C2C12 myotubes and siRNA-mediated abrogation of the effect. Non-targeted metabolite analysis revealed the presence of 721 diverse metabolites in tomato. By integrating the activity of fractions on AMPK phosphorylation and the 721 metabolites based on their retention times of liquid chromatography, we performed a comprehensive screen for metabolites that possess adiponectin-like activity. As the screening suggested that the active fractions contained four carotenoids, we further analyzed β-carotene and lycopene, the major carotenoids of food. They induced AMPK phosphorylation via the AdipoR, Ca2+/calmodulin-dependent protein kinase kinase and Ca2+ influx, in addition to activating glucose uptake via AdipoR in C2C12 myotubes. All these events were characteristic adiponectin actions. These results indicated that the food-derived carotenoids, β-carotene and lycopene, activate the adiponectin signaling pathway, including AMPK phosphorylation.
Lewandowski C.T., Laham M.S., Thatcher G.R.
Acta Pharmaceutica Sinica B scimago Q1 wos Q1 Open Access
2022-03-01 citations by CoLab: 29 Abstract  
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood-brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Kumar R., T A., Singothu S., Singh S.B., Bhandari V.
Biomedicine and Pharmacotherapy scimago Q1 wos Q1 Open Access
2022-03-01 citations by CoLab: 28 Abstract  
Mitochondrial uncoupling proteins (UCP) are a part of the large family of mitochondrial solute carriers (SLC25s), concentrated in the inner mitochondrial membrane that carries protons from intermembrane space to the matrix. Further, some UCPs are also involved in the transportation of the fatty acid anions and catalyzed the proton transport by fatty acid cycling across the membrane. Out of the 5 UCPs, UCP 2, 4, and 5 are localized in the central nervous system (CNS), and alteration within the expression of these UCPs results in neuronal dysfunction and, ultimately, death of neurons. UCPs play a vital role in regulating mitochondrial membrane potential, preventing reactive oxygen species (ROS) production, alteration in neuronal activity, and the regulation of calcium homeostasis that ultimately results in the prevention of neuronal loss. These changes in mitochondria impact the function and survival of neurons playing a critical role in the progression of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Additionally, UCP2 regulates the microglia response towards neuroinflammation by modulating microglia's M1 and M2 phenotypes. These microglia cells are further involved in regulating inflammatory response and synaptic functions. Moreover, UCP2, 4, and 5 are ubiquitously present in all brain regions that negatively regulate ROS production and inflammation, leading to the prevention of neuronal cell death. Increased ROS production is a common symptom reported in neurodegenerative diseases that affect several pathways concerned with neuronal death, either apoptosis or autophagy. These accumulating evidence suggested UCPs as a possible therapeutic target for the management of neurodegenerative diseases.
ALTamimi J.Z., Alshammari G.M., AlFaris N.A., Alagal R.I., Aljabryn D.H., Albekairi N.A., Alkhateeb M.A., Yahya M.A.
Pharmaceutical Biology scimago Q1 wos Q1 Open Access
2021-12-06 citations by CoLab: 35 PDF Abstract  
Ellagic acid (EA) is used in traditional medicine to treated hyperlipidaemia.This study examined if AMPK mediates the anti-steatotic effect of ellagic acid (EA) in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats.Adult male Wistar rats (130 ± 10 g) were divided into 6 groups (n = 8 rats/group) as control, control + EA, control + EA + CC an AMPK inhibitor), T1DM, T1DM + EA, and T1DM + EA + CC. The treatments with EA (50 mg/kg/orally) and CC (200 ng/rat/i.p.) were given the desired groups for 12 weeks, daily.In T1DM-rats, EA reduced fasting glucose levels (44.8%), increased fasting insulin levels (92.8%), prevented hepatic lipid accumulation, and decreased hepatic and serum levels of total triglycerides (54% & 61%), cholesterol (57% & 48%), and free fatty acids (40% & 37%). It also reduced hepatic levels of ROS (62%), MDA (52%), TNF-α (62%), and IL-6 (57.2%) and the nuclear activity of NF-κB p65 (54%) but increased the nuclear activity of Nrf-2 (4-fold) and levels of GSH (107%) and SOD (87%). Besides, EA reduced downregulated SREBP1 (35%), SREBP2 (34%), ACC-1 (36%), FAS (38%), and HMG-CoAR (49%) but stimulated mRNA levels of PPARα (1.7-fold) and CPT1a (1.8-fold), CPT1b (2.9-fold), and p-AMPK (4-fold). All these events were prevented by the co-administration of CC.These findings encourage the use of EA to treat hepatic disorders, and non-alcoholic fatty liver disease (NAFLD). Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?