Journal of Chemical Theory and Computation, volume 18, issue 2, pages 1109-1121

Nanohardness from First Principles with Active Learning on Atomic Environments

Publication typeJournal Article
Publication date2022-01-06
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor5.5
ISSN15499618, 15499626
Physical and Theoretical Chemistry
Computer Science Applications
Abstract
We propose a methodology for the calculation of nanohardness by atomistic simulations of nanoindentation. The methodology is enabled by machine-learning interatomic potentials fitted on the fly to quantum-mechanical calculations of local fragments of the large nanoindentation simulation. We test our methodology by calculating nanohardness, as a function of load and crystallographic orientation of the surface, of diamond, AlN, SiC, BC2N, and Si and comparing it to the calibrated values of the macro- and microhardness. The observed agreement between the computational and experimental results from the literature provides evidence that our method has sufficient predictive power to open up the possibility of designing materials with exceptional hardness directly from first principles. It will be especially valuable at the nanoscale where the experimental measurements are difficult, while empirical models fitted to macrohardness are, as a rule, inapplicable.

Citations by journals

1
Materials Horizons
Materials Horizons, 1, 10%
Materials Horizons
1 publication, 10%
Physical Review Materials
Physical Review Materials, 1, 10%
Physical Review Materials
1 publication, 10%
European Physical Journal Plus
European Physical Journal Plus, 1, 10%
European Physical Journal Plus
1 publication, 10%
Journal of Chemical Physics
Journal of Chemical Physics, 1, 10%
Journal of Chemical Physics
1 publication, 10%
Science and Technology of Advanced Materials Methods
Science and Technology of Advanced Materials Methods, 1, 10%
Science and Technology of Advanced Materials Methods
1 publication, 10%
Advanced Materials
Advanced Materials, 1, 10%
Advanced Materials
1 publication, 10%
Computational Materials Science
Computational Materials Science, 1, 10%
Computational Materials Science
1 publication, 10%
Machine Learning and Deep Learning in Computational Toxicology
Machine Learning and Deep Learning in Computational Toxicology, 1, 10%
Machine Learning and Deep Learning in Computational Toxicology
1 publication, 10%
Advanced Theory and Simulations
Advanced Theory and Simulations, 1, 10%
Advanced Theory and Simulations
1 publication, 10%
Physical Review B
Physical Review B, 1, 10%
Physical Review B
1 publication, 10%
1

Citations by publishers

1
2
American Physical Society (APS)
American Physical Society (APS), 2, 20%
American Physical Society (APS)
2 publications, 20%
Springer Nature
Springer Nature, 2, 20%
Springer Nature
2 publications, 20%
Wiley
Wiley, 2, 20%
Wiley
2 publications, 20%
Royal Society of Chemistry (RSC)
Royal Society of Chemistry (RSC), 1, 10%
Royal Society of Chemistry (RSC)
1 publication, 10%
American Institute of Physics (AIP)
American Institute of Physics (AIP), 1, 10%
American Institute of Physics (AIP)
1 publication, 10%
Taylor & Francis
Taylor & Francis, 1, 10%
Taylor & Francis
1 publication, 10%
Elsevier
Elsevier, 1, 10%
Elsevier
1 publication, 10%
1
2
  • We do not take into account publications that without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Podryabinkin E. V. et al. Nanohardness from First Principles with Active Learning on Atomic Environments // Journal of Chemical Theory and Computation. 2022. Vol. 18. No. 2. pp. 1109-1121.
GOST all authors (up to 50) Copy
Podryabinkin E. V., Kvashnin A. G., Asgarpour M., Maslenikov I. I., Ovsyannikov D. A., Sorokin P. B., Popov M. Yu., Shapeev A. V. Nanohardness from First Principles with Active Learning on Atomic Environments // Journal of Chemical Theory and Computation. 2022. Vol. 18. No. 2. pp. 1109-1121.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jctc.1c00783
UR - https://doi.org/10.1021%2Facs.jctc.1c00783
TI - Nanohardness from First Principles with Active Learning on Atomic Environments
T2 - Journal of Chemical Theory and Computation
AU - Asgarpour, Milad
AU - Maslenikov, Igor I.
AU - Ovsyannikov, Danila A
AU - Shapeev, Alexander V
AU - Popov, Mikhail Yu
AU - Podryabinkin, Evgeny V.
AU - Kvashnin, Alexander G.
AU - Sorokin, Pavel B.
PY - 2022
DA - 2022/01/06 00:00:00
PB - American Chemical Society (ACS)
SP - 1109-1121
IS - 2
VL - 18
SN - 1549-9618
SN - 1549-9626
ER -
BibTex |
Cite this
BibTex Copy
@article{2022_Podryabinkin,
author = {Milad Asgarpour and Igor I. Maslenikov and Danila A Ovsyannikov and Alexander V Shapeev and Mikhail Yu Popov and Evgeny V. Podryabinkin and Alexander G. Kvashnin and Pavel B. Sorokin},
title = {Nanohardness from First Principles with Active Learning on Atomic Environments},
journal = {Journal of Chemical Theory and Computation},
year = {2022},
volume = {18},
publisher = {American Chemical Society (ACS)},
month = {jan},
url = {https://doi.org/10.1021%2Facs.jctc.1c00783},
number = {2},
pages = {1109--1121},
doi = {10.1021/acs.jctc.1c00783}
}
MLA
Cite this
MLA Copy
Podryabinkin, Evgeny V., et al. “Nanohardness from First Principles with Active Learning on Atomic Environments.” Journal of Chemical Theory and Computation, vol. 18, no. 2, Jan. 2022, pp. 1109-1121. https://doi.org/10.1021%2Facs.jctc.1c00783.
Found error?