14 July 2022, 23:00

Светодиодные лампы помогли синтезировать органические катализаторы

Российские ученые разработали простой, дешевый и эффективный метод синтеза арилфосфинов — важного компонента многих органических катализаторов на основе переходных металлов. Оказалось, что для их получения достаточно осветить исходные соединения диодной лампой, тогда как при традиционных способах требуется долгая и сложная очистка с применением дополнительных довольно токсичных катализаторов и реагентов. Предложенное решение найдет применение в фарминдустрии и производстве органических материалов для электроники.

Светодиодные лампы помогли синтезировать органические катализаторы
Процесс синтеза арилфосфинов при облучении видимым светом
Source: Дмитрий Бугаенко

Арилфосфины — один из наиболее важных видов фосфорсодержащих органических соединений, которые часто применяются при создании катализаторов. Последние ускоряют самые разные химические превращения, в том числе используемые при синтезе лекарств и органических материалов для электроники. Главное преимущество арилфосфинов состоит в том, что они способны связывать переходные металлы, формируя при этом стабильные, растворимые и эффективные катализаторы. При этом важно, чтобы используемый в процессе получения таких систем фосфин не содержал примесей других переходных металлов, иначе продукт теряет свои свойства. Например, для создания соединения на основе золота нужно, чтобы в нем не было примеси палладия. Сегодня фосфины получают с использованием переходных металлов, которые образуют с ними прочные комплексы. Чтобы полностью освободиться от таких микропримесей (даже на недетектируемом уровне), применяют специальные дорогостоящие и времязатратные методы очистки с дополнительными реагентами — комплексонами.

Ученые из Московского государственного университета имени М.В. Ломоносова (Москва) предложили простой и дешевый способ получения арилфосфинов гарантированно без примесей переходных металлов. Он заключается в том, что раствор исходных веществ освещают простой бытовой диодной лампой при комнатной температуре в течение непродолжительного времени — достаточно даже двух часов. Таким образом метод не требует сложных приборов и использования дорогостоящих катализаторов, которые к тому же обычно токсичны, а также металлов, которые могли бы загрязнить фосфины. Кроме того, разработанный подход позволяет синтезировать труднодоступные или вовсе недоступные ранее арилфосфины с большой арильной группой. Последние особо ценны в катализе из-за их положительного влияния на стабильность получаемого продукта.

«Учитывая особую практическую значимость арилфосфинов для различных сфер, например, медицины и создания современных девайсов, мы были нацелены на разработку способа получения именно этих соединений. Использование традиционных методов, таких как нагревание, оказалось неэффективным, поэтому мы обратились к активации реакций видимым светом. Способ привлекает в последние годы огромное внимание со стороны ученых ввиду своей простоты и экологичности», — рассказывает руководитель проекта, поддержанного грантом РНФ, Дмитрий Бугаенко, кандидат химических наук, научный сотрудник кафедры органической химии химического факультета МГУ.

Source:  Пресс-служба РНФ

News article publications

Read also

Из соды и гидроксида платины получился катализатор для разложения гидразина
В результате реакции образовалось несколько вариантов устойчивых карбонатных комплексов платины, которые и послужили основой для будущих катализаторов. Последние оказались в 23 раза эффективнее своих аналогов
Catalysis
Chemistry of coordination compounds
New techniques
12 July 2023
Всего один фотокатализатор позволил получить 250 ценных продуктов
Под действием видимого света и добавленных реагентов в таком катализаторе самопроизвольно изменяется структура и степень окисления металла, что обеспечивает максимальную эффективность химического процесса
Catalysis
New techniques
Organic Chemistry
Photochemistry
16 June 2023
Наночастицы металла катализаторов оказались их собственными «отравителями»
Более того, они даже не играют ключевую роль в ускорении реакций: главными оказались отдельные атомы металла. Выяснить это удалось путем сочетания нескольких методов, позволивших следить за превращениями одной наночастицы в ходе химического процесса
Catalysis
New techniques
Organic Chemistry
27 April 2023
Органика повысила стабильность катализаторов для водородной энергетики
Они оказались способны ускорять реакцию разложения воды как минимум в течение 1000 циклов при непрерывной работе и были устойчивы даже при температурах 150-200°С.
Alternative energy
Catalysis
Materials Science
New techniques
Synthesis
3 February 2023
Марганцевый катализатор упростит получение и хранение водородного топлива
Ученые создали катализатор на основе марганца для получения водорода из амин-боранов — твердых стабильных органических соединений. Такая реакция позволит использовать амин-бораны в «зеленой» энергетике для хранения и транспортировки водородного топлива. Предложенный катализатор в десятки раз эффективнее высвобождает водород, чем большинство известных комплексов на основе благородных металлов.
"Green" chemistry
"Green" technologies
Catalysis
17 February 2024
Разработан «полуслепой» метод описания квантовых систем
Ученые предложили подход, который позволяет определять состояние квантовой системы, зная лишь часть данных от общего их числа, необходимого для полного описания этой системы. Разработанный метод может помочь предсказывать физические и химические процессы, связанные со свойствами квантовых систем. Помимо использования в химии и физике, предсказание квантовых процессов поможет ученым реализовать алгоритмы для самых различных отраслей — от дизайна лекарств до моделирования материалов.
New techniques
Quantum Chemistry
Quantum Physics
8 February 2024