16 June 2023, 21:00

Всего один фотокатализатор позволил получить 250 ценных продуктов

Группа ученых из России и Германии продемонстрировала новую каталитическую систему на основе простейших солей никеля и фотоактивной добавки. Под действием видимого света и добавленных реагентов в таком катализаторе самопроизвольно изменяется структура и степень окисления металла, что обеспечивает максимальную эффективность химического процесса. С помощью дешевого и доступного катализатора авторы смогли получить и описать более 250 продуктов, среди которых — предшественники лекарств, пестицидов и других полезных соединений.

Всего один фотокатализатор позволил получить 250 ценных продуктов
Иллюстрация динамического адаптивного катализа
Source: Валентин Анаников

Переходные металлы, способные изменять свою степень окисления, часто становятся основой катализаторов для органического синтеза, в том числе медицинских субстанций и разнообразных химикатов. Несмотря на множество работ, посвященных катализу комплексами меди, палладия, никеля и прочими металлами, подбор оптимальных условий для наиболее эффективного протекания реакции остается нетривиальной задачей. Так, приходится изменять внешние условия — температуру, давление, растворитель; с точностью до небольших боковых групп выбирать лиганды, окружающие атом металла и помогающие ему взаимодействовать с реагентами; учитывать структуру катализатора и субстрата (реагентов) и многое другое. Что-то удается рассчитать на компьютере, но большая работа кроется в экспериментах — подчас достаточно дорогих и трудоемких. В итоге удается выбрать более-менее оптимальную реакционную систему, в лучшем случае актуальную для класса соединений или типа реакций. При постановке новой задачи, пусть даже и достаточно близкой к уже решенной, все приходится повторять с начала.

Исследователи из лаборатории металлокомплексных и наноразмерных катализаторов Института органической химии имени Н.Д. Зелинского (Москва) и Регенсбургского университета (Германия) предложили универсальную каталитическую систему, в которой нет дорогих или редких компонентов. В основе — простейшие соли никеля и дешевая фотоактивная добавка. Настроить каталитические свойства удалось под действием видимого света (то есть не нужны дорогие лазеры или мощные ультрафиолетовые лампы) при помощи повсеместно используемых органических оснований – особых органических «адаптеров». Последний компонент системы — субстрат, то есть реагент, из которого будет синтезироваться продукт. Все три компонента находятся в одном состоянии, жидком, — такой катализ называется гомогенным.

Так, под действием света начинается фотохимическая реакция и процесс образования широкого многообразия комплексов из никелевого ядра и «адаптеров»-оснований. Однако то, как будет устроена каталитически активная частица среди множества доступных вариантов, зависит от субстрата: его геометрии, химических свойств и прочего. По сути, система сама «выбирает», какой тип каталитических частиц будет наиболее эффективен в каждом случае.

Универсальность предложенного подхода ученые продемонстрировали на примере реакций кросс-сочетания, сопровождающихся образованием девяти различных типов связи. Авторам удалось получить более 250 разных продуктов, структуру которых можно предсказать в случае каждого из субстратов.

«Отличительными особенностями нашей фотокаталитической системы является ее доступность и мягкость условий протекания процессов. Для сравнения: в реакциях кросс-сочетания обычно используют дорогие комплексы палладия или других металлов — более дешевых, но работающих при высоких температурах. С другой стороны, минимальный набор исходных параметров адаптивной каталитической системы делает ее предсказуемой и потенциально привлекательной для построения более совершенной модели с использованием искусственного интеллекта», — рассказывает руководитель проекта, поддержанного грантом РНФ, Валентин Анаников, академик РАН, руководитель отдела ИОХ РАН, профессор химического факультета МГУ.

Source:  Пресс-служба РНФ

News article publications

Read also

Наночастицы металла катализаторов оказались их собственными «отравителями»
Более того, они даже не играют ключевую роль в ускорении реакций: главными оказались отдельные атомы металла. Выяснить это удалось путем сочетания нескольких методов, позволивших следить за превращениями одной наночастицы в ходе химического процесса
Catalysis
New techniques
Organic Chemistry
27 April 2023
Катализаторы из винной кислоты повысят оптическую чистоту органических молекул
Ученые создали металлокомплексные катализаторы на основе палладия и органических молекул, содержащих атомы серы и фосфора. Использование этих катализаторов позволяет получать соединения с оптической чистотой до 99%. Оптическая чистота важна при производстве лекарств, витаминов и пестицидов, поскольку она влияет на их биологическую активность.
Catalysis
Organic Chemistry
Synthesis
25 January 2024
Ученые изучили хромогенные свойства производных человеческих гормонов
Ученые из ЮФУ в сотрудничестве с коллегами из СКФУ и из Египта получили спиропирановые производные человеческих гормонов - бета-эстрадиола и этрона, изучили эффект изменения их оптических свойств под действием облучения или изменения кислотности среды, а также оценили их цитотоксичность.
Biochemistry
Organic Chemistry
Photochemistry
23 October 2023
Учёные из Махачкалы получили мембранный фотокатализатор на основе ПВДФ
Химики из лаборатории Smart Materials Дагестанского государственного университета вместе с коллегами из Чехии и Института физики Дагестанского федерального исследовательского центра РАН разработали волоконные гибридные полимерные мембраны, ускоряющие химические превращения под действием световой и механической энергии. Авторы доказали эффективность полученных катализаторов в реакции разложения метиленового синего — красителя, который широко используется в химии и медицине. Разработка может лечь в основу дешевых, биосовместимых и экологически чистых катализаторов для очистки сточных вод от продуктов химического синтеза и других загрязнителей.
"Smart" materials
Catalysis
Photochemistry
21 August 2023
Из соды и гидроксида платины получился катализатор для разложения гидразина
В результате реакции образовалось несколько вариантов устойчивых карбонатных комплексов платины, которые и послужили основой для будущих катализаторов. Последние оказались в 23 раза эффективнее своих аналогов
Catalysis
Chemistry of coordination compounds
New techniques
12 July 2023
Новая эмульсия поможет уничтожать опухоли кислородом даже там, где его нет
Предложенный подход позволит не только сделать фотодинамическую терапию рака эффективнее, но и использовать ее в случае особо агрессивных новообразований, не поддающихся лечению иными способами
New techniques
Oncology
Organic Chemistry
Pharmacology
Photophysics
25 May 2023