18 July 2022, 19:05

Химики МГУ создали стабильные и селективные катализаторы для водородной энергетики

Сотрудники лаборатории катализа и газовой электрохимии кафедры физической химии химического факультета МГУ предложили способ получения более качественного катализатора для очистки водорода от примесей монооксида углерода СО. Более чистый водород обеспечивает долгую жизнь топливных элементов, что критически важно для водородной энергетики.

Химики МГУ создали стабильные и селективные катализаторы для водородной энергетики
Source: Пресс-служба химического факультета МГУ // Юлия Чернова

Основным и наиболее дешевым методом получения водорода в мире остается переработка природного газа. Такой водород содержит значительную долю угарного газа, который удаляют адсорбционными методами. Однако эти методы не способны полностью очистить водород, и в нем остаются небольшие примеси CO.

«Водород используют в мембранных топливных элементах, которые служат источниками экологически чистой, "зеленой" энергии, — объяснил сотрудник лаборатории катализа и газовой электрохимии, аспирант Игорь Каплин. — В состав таких устройств входит платиновый катализатор, который очень чувствителен к присутствию CO. Даже небольшие примеси этого газа в потоке водорода заметно снижают эффективность топливных элементов и уменьшают срок их эксплуатации».

Для очистки водорода от очень низких концентраций СО применяют технологии каталитического окисления. Важно, чтобы каталитическая система была не только активна, но и селективна, то есть способствовала быстрому окислению СО и минимально ускоряла побочные реакции, главным образом, окисление водорода. Важным свойством катализатора также является стабильность в широком температурном интервале.

«Поиск катализаторов ведется сразу в нескольких направлениях, — рассказал Игорь Каплин. — Во-первых, совершенствуют катализаторы на основе благородных металлов. Безусловно, они очень активны, но имеют ряд недостатков. Такие системы теряют активность в процессе спекания при высоких температурах, а еще они дорогие. Кроме того, некоторые благородные металлы могут ускорять побочные процессы. Вторым, более перспективным направлением является разработка оксидных катализаторов на основе церия. Они дешевле, более стабильны в реакционных условиях, но по активности уступают благородным металлам. Однако их эффективность можно улучшить различными способами, например, путем добавления промоторов и за счет оптимизации условий приготовления».

В работе авторы предложили новый метод приготовления оксидного катализатора, состоящего их трех компонентов. Двумя активными составляющими выступили диоксид церия и оксид меди. Третьим компонентом стал диоксид кремния, обладающий способностью стабилизировать частицы оксидов в высокодисперсном состоянии.

«Главной нашей заслугой является то, что мы предложили близкий к оптимальному состав катализатора и усовершенствовали методику его приготовления, — пояснил Игорь Каплин. — Способ синтеза катализатора очень важен. От него зависят удельная площадь поверхности и структурные свойства катализатора, размер и дисперсность частиц активного компонента. Мы показали, что использование высокого соотношения церия к кремнию и специального метода приготовления тройных оксидных систем позволяет получить катализатор с мелкими наночастицами диоксида церия и модификатора — оксида меди, причем модификатор равномерно распределен на поверхности. Данная система оказалась стабильной и проявила высокую каталитическую активность в реакции предпочтительного окисления CO в присутствии избытка водорода».

Как говорят авторы, на пути к промышленному использованию предстоит проделать еще большой комплекс дополнительных исследований. Ближайшим этапом станет испытание образцов на полупромышленной установке и изучение механических характеристик катализатора.

Source:  Пресс-служба химического факультета МГУ

News article publications

Read also

Нанокатализатор поможет производить экологичный бензин для автомобилей
Химики предложили способ, как превратить малоиспользуемую гептановую фракцию в высокооктановый изомеризат, снижающий экологический вред от использования бензина
"Green" technologies
Catalysis
Energy industry
25 October 2022
Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Green" chemistry
Energy industry
Materials Science
18 March 2024
Марганцевый катализатор упростит получение и хранение водородного топлива
Ученые создали катализатор на основе марганца для получения водорода из амин-боранов — твердых стабильных органических соединений. Такая реакция позволит использовать амин-бораны в «зеленой» энергетике для хранения и транспортировки водородного топлива. Предложенный катализатор в десятки раз эффективнее высвобождает водород, чем большинство известных комплексов на основе благородных металлов.
"Green" chemistry
"Green" technologies
Catalysis
17 February 2024
Разработаны безопасные материалы для рентгеновских аппаратов
Ученые создали новые соединения, которые эффективно преобразуют рентгеновское излучение в видимый свет. Материалы с такими свойствами используются в рентгеновских аппаратах, просвечивающих устройствах в аэропортах, а также датчиках ионизирующего излучения. Соединения эффективнее аналогов, кроме того, они просты в получении, дешевы и нетоксичны.
Energy industry
Medicine
X-ray radiation
5 February 2024
Катализаторы из винной кислоты повысят оптическую чистоту органических молекул
Ученые создали металлокомплексные катализаторы на основе палладия и органических молекул, содержащих атомы серы и фосфора. Использование этих катализаторов позволяет получать соединения с оптической чистотой до 99%. Оптическая чистота важна при производстве лекарств, витаминов и пестицидов, поскольку она влияет на их биологическую активность.
Catalysis
Organic Chemistry
Synthesis
25 January 2024
Три металла и новая технология упростят получение ненасыщенных спиртов
Ученые синтезировали катализатор на основе наночастиц платины, оксидов церия и циркония, который позволяет превращать ненасыщенные альдегиды в ненасыщенные спирты. Такая реакция нужна при создании духов, отдушек и лекарств. При использовании нового катализатора избирательность и эффективность процесса достигли 100%. Это значит, что при синтезе протекала только необходимая ученым реакция, после которой не оставалось побочных продуктов.
Catalysis
Nanotechnology
Synthesis
23 January 2024