19 October 2023, 12:00

Усовершенствован анализ качества растворителей литий-ионных аккумуляторов

«Все основные характеристики аккумулятора в той или иной степени зависят от состава растворителя. Применение специально разработанного растворителя может значительно их улучшить и обеспечить меньшее количество паразитных химических реакций и максимальный КПД. От его качества зависят срок эксплуатации, износ, время сохранения заряда.  Чем лучше подобран растворитель, тем более емкие электроды можно использовать и большего напряжения возможно достичь», — рассказал Максим Орехов, сотрудник лаборатории суперкомпьютерных методов в физике конденсированного состояния МФТИ.

Реакции восстановления, которые идут во время работы аккумулятора, существенно влияют на его производительность. Такие реакции могут быть подавлены в некоторых растворителях и быть очень активными в других. В итоге для получения растворителя, позволяющего добиться максимальной работоспособности, необходимо проверять его состав на молекулярном уровне. Например, молекулы этиленкарбонат (EC)1 и ацетонитрил (ACN)6 обладают высокой экспериментальной энергией восстановления, и их можно рассматривать как редукционно-неустойчивые. Другие молекулы, такие как тетрагидрофуран (ТГФ)3, имеют низкую энергию восстановления и обеспечивают лучшую устойчивость.

«Определение свойств жидкости на основе ее молекулярного состава требует быстрого метода оценки. В жидкости тысячи молекул, и моделирование поведения каждой из них требовало много времени. Предложенный нами метод позволил решить эту задачу за минуты. Существовавшие ранее подходы брали за основу результат анализа поведения только одной молекулы, что дает весьма поверхностную оценку, не учитывающую целого ряда важных факторов, влияющих на работу аккумулятора. Необходимо было подобрать метод, позволяющий быстро обсчитать поведение большого количества молекул, из которых состоит раствор», — прокомментировал Максим Орехов.

В последние годы метод виртуального скрининга дал возможность ученым перебирать все перспективные растворители и просчитывать полезность каждого кандидата. При этом основная проблема состояла в том, что необходимо отследить все реакции в растворе, состоящем из большого массива молекул. В результате компьютерный анализ в основном осуществлялся без учета роли ионов солей лития, которые сильно влияют на реакции. Такое моделирование имело гораздо меньшую вычислительную сложность, но не учитывало возникающих связей, которые напрямую влияют на работоспособность аккумуляторов. В связи с этим Максим Орехов для компьютерного моделирования поведения раствора электролита предложил использовать метод CONSTRAINT DFT, который позволяет более аккуратно учесть все возможные эффекты. 

«Для точного анализа качества раствора нам необходимо учитывать именно те эффекты, которые дает жидкость с множеством молекул. В своей работе мы демонстрируем практическое применение метода на наборе из 30 молекул базы данных растворителей электролитов. Результаты наглядно показывают, что наш подход обеспечивает лучшее согласие с экспериментальными данными по сравнению с существовавшими ранее подходами», — добавил Максим Орехов.  

Данная работа продемонстрировали важность точного учета взаимодействия молекул растворителя литий-ионных аккумуляторов между собой и с окружающей средой. Новый метод исследования позволит увеличить точность определения качества молекул растворителя и поможет быстро отбирать наилучшие варианты, тем самым повышая работоспособность и долговечность аккумуляторов. 

Исследование поддержано Российским научным фондом (проект 21-79-00150). Работа опубликована в The Journal of Computational Chemistry. 

Source:  Пресс-служба МФТИ

News article publications

Read also

Полимерный слой позволяет защитить аккумуляторы от возгорания
Ученые обнаружили, что слой полимера, нанесенный между слоями фольги и катодного вещества в литий-ионном аккумуляторе, позволяет предотвратить его возгорание или взрыв. Предложенный авторами полимер проводит электричество, но, как только напряжение становится выше, чем то, на которое рассчитан аккумулятор, соединение окисляется и перестает проводить ток. Благодаря этому аккумулятор, использующийся в смартфонах и электромобилях, не перегревается и абсолютно не способен самовозгораться.
"Green" chemistry
"Green" technologies
Electrochemistry
Polymer Chemistry
11 December 2023
Марганцевый катализатор упростит получение и хранение водородного топлива
Ученые создали катализатор на основе марганца для получения водорода из амин-боранов — твердых стабильных органических соединений. Такая реакция позволит использовать амин-бораны в «зеленой» энергетике для хранения и транспортировки водородного топлива. Предложенный катализатор в десятки раз эффективнее высвобождает водород, чем большинство известных комплексов на основе благородных металлов.
"Green" chemistry
"Green" technologies
Catalysis
17 February 2024
Катализаторы с железом и марганцем ускорят реакции для получения электроэнергии
Ученые синтезировали соединение, которое ускоряет химическую реакцию, лежащую в основе получения электроэнергии в экологически чистых топливных элементах. В состав разработанного катализатора входят железо и марганец. Эти металлы доступны и нетоксичны, поэтому полученное вещество может стать хорошей альтернативой широко применяемым сегодня платиновым катализаторам.
"Green" chemistry
"Green" technologies
Synthesis
30 October 2023
Химики предложили новый растворитель для переработки аккумуляторов
В этом качестве выступили так называемые глубокие эвтектические растворители: смесь двух органических веществ, которую можно настроить на извлечение из раствора необходимых элементов
"Green" chemistry
"Green" technologies
Chemical technology
19 December 2022
Зловредный борщевик превратили в материал для батарей в зелёной энергетике
Ученые сделали из сорняка высококачественный углеродный материал для анодов натрий-ионных батарей.
"Green" chemistry
Electrochemistry
Materials Science
12 October 2022
Ученые усовершенствовали метод получения биотоплива из растительных отходов
Предложенная технология позволяет задействовать воду, которая содержится в бионефти, в качестве источника водорода для облагораживания сырья и улучшения его свойств.
"Green" chemistry
"Green" technologies
Bioenergy
27 April 2022