10 ноября 2022, 23:55

Скомканный графен и частицы металла помогли создать новый сверхпрочный материал

Композиты
Материаловедение
Сверхпрочные материалы

Российские ученые разработали технологию производства высокопрочных композитных материалов на основе скомканного графена и наночастиц металла — меди и никеля. Полученные композиты демонстрируют прочность во много раз выше, чем у известных на данный момент аналогов. Благодаря этому подобные материалы можно использовать для создания покрытий деталей самолетов и космических аппаратов.

Скомканный графен и частицы металла помогли создать новый сверхпрочный материал
Этапы создания композитов на основе графена и металлов (никеля и меди) и кривые плотности полученных материалов

Современную промышленность сложно представить без композитных материалов, в состав которых входит несколько различающихся по физическим и химическим свойствам компонентов. Так, например, инженеры часто используют сочетание графена с металлами, поскольку это позволяет получить прочные, пластичные и долговечные конструкции. Металлы при этом выступают в качестве матрицы, то есть основного компонента, а плоские листы графена толщиной всего в один атом — в качестве армирующего элемента благодаря их высокой прочности и малому весу. Однако до сих пор производство графеновых листов макроразмера (до десятых долей миллиметра) дорогое и малоэффективное. Поэтому чаще в композитах используют скомканные листы графена, которые можно получать простым экономичным способом, но которые не теряют прочности графена и в той же мере усиливают металлическую матрицу композита.

Несмотря на то, что уже существует несколько технологий производства композитных материалов на основе графена и металлов, ни для одной из них не описаны оптимальные физико-химические условия, позволяющие получить максимально прочный композит. Сотрудники Института проблем сверхпластичности металлов РАН (Уфа) предложили новую технологию производства композитных материалов на основе графена в сочетании с атомами никеля или меди. Эти металлы авторы выбрали потому, что они хорошо взаимодействуют с графеном и часто используются в микроэлектронике, а также при конструировании авиатехники. 

Исследователи сначала рассчитали оптимальный размер частиц никеля и меди, который обеспечил бы наиболее крепкое связывание с графеновыми листами. Затем, опираясь на химические свойства металлов, определили температуру, необходимую для их взаимодействия с армирующим компонентом. 

Численные эксперименты показали, что в процессе формирования композита путем сжатия требуется нагрев компонентов до температуры, превышающей 700℃. Именно в этом случае металлы равномерно распределяются между листами графена, что приводит к образованию однородного композита.

Далее ученые проверили механические свойства полученных материалов, растягивая образцы. Оказалось, что оба варианта композитов — включающие как атомы никеля, так и меди — выдерживали деформации, по величине превышающие известные на данный момент пределы прочности. В то же время материал, в состав которого входила медь, был на 35% более прочным, чем никелевый композит. Медь — более легкоплавкий металл, и поэтому при одинаковой температурной обработке она равномернее распределяется по материалу, чем никель, а композит получается намного прочнее.

«Наше исследование поможет создавать прочные композиты на основе графеновых листов и металлов, которые благодаря прочности и легкости перспективны в аэрокосмической промышленности. В будущем мы планируем изучить материалы на основе скомканного графена с другими металлическими наночастицами, в частности титаном и алюминием», — рассказывает руководитель проекта, поддержанного грантом РНФ, Юлия Баимова, доктор физико-математических наук, профессор РАН, заведующая лабораторией «Физика и механика углеродных наноматериалов» ИПСМ РАН.

 

Источник:  Пресс-служба РНФ

Публикации из новости

Molecular dynamics study of the mechanical properties and deformation behavior of graphene/metal composites
Safina L.R., Krylova K.A., Baimova J.A.
Q1 Materials Today Physics 2022 цитирований: 0

Читайте также

В ИОХ РАН разработан экологичный метод электрохимического травления германия
В Лаборатории аналогов карбенов и других нестабильных молекул ИОХ РАН впервые показана возможность получения пористого германия с использованием экологически чистых имидазолиевых ионных жидкостей.
Материаловедение
Экология
Электрохимия
16 ноября 2021
Международный коллектив ученых разработал привитую мембрану для «зеленой» электроэнергии
Ученые из ИОНХ РАН, НИУ ВШЭ, Кафедры химического машиностроения (Бельгия) и Технологического университета Тшване (Южная Африка) разработал ионообменные мембраны на основе привитых сополимеров для производства электроэнергии в процессе обратного электродиализа.
Материаловедение
Химия высокомолекулярных соединений
27 октября 2021
Ученые создали из иттербия источники ИК-излучения рекордной интенсивности с помощью нафталиновой «шубы»
Научные сотрудники ФИАН, МГТУ им. Н. Э. Баумана, ИНЭОС РАН, ИОХ РАН и ИОНХ РАН синтезировали и исследовали новые комплексы иттербия с люминесцентными свойствами, перспективные для создания прототипов органических светоизлучающих диодов.
Материаловедение
Неорганическая химия
Химия координационных соединений
20 октября 2021