12 December 2022, 21:00

Вирусы самособираются, начиная с японского узора кагомэ

Российские ученые предложили новую структурную модель оболочек флавивирусов, вызывающих энцефалит и геморрагическую лихорадку. Согласно ей, вирусные частицы проходят сложный цикл созревания, при котором их поверхность, вначале рыхлая и похожая на японский узор кагомэ, становится более гладкой и плотной. Это необходимо, чтобы новые инфекционные частицы могли заражать человеческие клетки. Понимание устройства и механизма созревания вирусных оболочек поможет ученым разработать вакцины и препараты для борьбы с заболеваниями, которые они вызывают.

Вирусы самособираются, начиная с японского узора кагомэ
Устройство трехслойной оболочки флавивирусов на примере вируса Зика

Несмотря на то, что вирусы нельзя отнести к живым организмам, они в определенных случаях ведут себя очень похоже на них. Так, эти частицы способны размножаться и передавать свою генетическую информацию потомству. Однако это возможно, только если вирус попадет в живую клетку организма-хозяина. При этом инфекционный агент использует ресурсы своего «хозяина» для самовоспроизведения, в ходе которого копирует генетический материал (ДНК или РНК) и собирает капсиды — белковые оболочки, защищающие молекулу-носитель наследственной информации.

Из-за того, что вирусы крайне миниатюрны (примерно в 50 раз меньше бактерий), их геном также невелик и может кодировать всего несколько белков, из которых состоит капсид. Поэтому оболочка вирусов обычно состоит из множества копий одного и того же белка или нескольких белков. Таким образом сборка капсида напоминает игру с детским конструктором, в котором есть всего несколько видов деталей. Интересно, что «инструкция по сборке» оболочки не кодируется вирусным геномом, а заложена в форме уже готовых белков. Так, подобно деталям конструктора, эти молекулы могут соединиться лишь определенными участками, благодаря чему капсиды собираются самопроизвольно.

Ученые из Южного федерального университета (Ростов-на-Дону) с коллегами из Китая описали принцип сборки сложных оболочек флавивирусов — возбудителей ряда опасных заболеваний человека. Оболочка этих инфекционных агентов состоит из трех слоев: двух белковых — внешнего и внутреннего — и лежащего между ними липидного. Таким образом, помимо одного белкового слоя, характерного для всех вирусных капсидов, флавивирусы имеют два дополнительных, внешних. Они необходимы для защиты генома и взаимодействия с клетками-хозяевами и проникновения в них.

Исследователи определили, что сразу после сборки вирусной частицы внешний и внутренний белковые слои оболочки флавивирусов имеют согласованное друг с другом строение, несмотря на то что между ними располагается препятствие в виде липидного слоя. Вместе они образуют очень плотную сферическую структуру, поверхность которой напоминает кагомэ — традиционный японский узор из треугольников и шестиугольников, который возникает при плетении корзин из стеблей бамбука.

Кроме того, авторы описали механизм созревания многослойной оболочки флавивирусов. Сразу после процесса сборки отдельные белки внешнего слоя оказываются объединены в тримеры — своеобразные «строительные блоки», состоящие из трех одинаковых молекул. Далее, по мере «путешествия» вновь образовавшихся вирусных частиц в хозяйской клетке, оболочка видоизменяется и становится более плотной. Когда вирус подходит к мембране, чтобы покинуть клетку и отправиться заражать соседние, он сталкивается с увеличивающейся кислотностью. В результате белки в составе его оболочки меняют свои электрические заряды, вследствие чего изменяется взаимодействие между белками и меняется тип их укладки. Понимание механизма таких преобразований поможет ученым разработать вакцины для борьбы с флавивирусами.

«На сегодняшний день не существует противовирусных препаратов и вакцин для борьбы с флавивирусами, вызывающими энцефалит и геморрагическую лихорадку. Однако наши исследования могут помочь сделать шаг к решению этой проблемы. В дальнейшем мы планируем исследовать механизмы сборки других семейств вирусов, вызывающих заболевания у человека», — рассказывает руководитель проекта, поддержанного грантом РНФ, Сергей Рошаль, доктор физико-математических наук, профессор кафедры «Нанотехнология» Южного федерального университета.

Source:  Пресс-служба РНФ

News article publications

Read also

Новая теория позволит предсказать самосборку белковых наночастиц
Авторы описали ее на примере оболочек вирусов, однако аналогичные системы можно использовать в качестве наноконтейнеров для лекарств и катализаторов
Molecular modeling
Nanotechnology
Virology
30 January 2023
Модель показала: вирусы собираются по принципу максимально плотной упаковки
Ученые раскрыли механизм сборки вирусных оболочек, в которых «кирпичики» представляют собой комплексы из двух или трех молекул
Mathematical modeling
Molecular modeling
Virology
20 October 2022
Биологи установили природу многофункциональности белка ВИЧ
Ученые выяснили, каким образом Tat белок вируса иммунодефицита человека (ВИЧ) выполняет сразу три разных функции, и установили возможные эволюционные механизмы возникновения этой многофункциональности.
Molecular modeling
Virology
27 January 2022
Фермент из яда гадюки Никольского против вируса SARS-CoV-2
Исследования, проведенные сотрудниками Отдела молекулярной нейроиммунной сигнализации ИБХ РАН и НИЦЭМ им.Н.Ф.Гамалеи, показали, что фосфолипазы А2 (PLA2) из змеиного яда защищают клетки Vero E6 от цитопатического эффекта SARS-CoV-2.
Molecular Biology
Molecular modeling
Virology
9 November 2021
Раскрыто, что некоторые белки помогают вирусам проникнуть в бактериальную клетку
Белки семейства ArdA помогают вирусам проникнуть в бактериальную клетку, приняв образ ее ДНК. Проведя фундаментальные исследования, ученые Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ и НИЦ «Курчатовский институт» показали, что такие белки не только подавляют защиту клеток, но и регулируют целый ряд других клеточных процессов. Результаты исследования заложили основу для будущих прикладных работ в области генной терапии.
Bacteriology
Genetics
Virology
31 January 2024
Найдена «точка невозврата» при развитии хронических вирусных инфекций
Ученые определили, что форма протекания вирусной инфекции — острая или хроническая — зависит от того, сколько раз в организме вырабатывается белок интерферон. При острой инфекции возникает две волны его продукции, но, если вирусная нагрузка оказывается слишком высокой, макрофаги CD169+, отвечающие за вторую волну, преждевременно разрушаются. В результате остается только первая волна интерферона, и иммунная система не может эффективно «мобилизоваться» и уничтожить вирус, а потому инфекция надолго остается в организме и становится хронической.
Genetics
Infectious diseases
Virology
30 January 2024