11 December 2023, 12:00

Полимерный слой позволяет защитить аккумуляторы от возгорания

Литий-ионные аккумуляторы сегодня используются почти везде: в мобильных телефонах, электромобилях, компьютерах — любой технике, где важна способность долго держать заряд. Внутри аккумулятора есть два электрода — элемента, проводящих ток, — катод и анод. Катод состоит из слоя смешанного оксида лития и переходных металлов, нанесенных на алюминиевую фольгу, а анод — из слоя углерода на медной фольге. Электроды разделяет пористый сепаратор, пропитанный электролитом — смесью органических растворителей и солей. Если из-за нагрева или другого воздействия повреждается тонкий разделительный слой (сепаратор), материалы внутри батареи начинают реагировать друг с другом и разлагаться. Такие реакции происходят с выделением тепла, из-за чего батарея нагревается почти до 600°С за секунды. В России в месяц происходит около 10 случаев возгорания или взрывов аккумуляторов смартфонов. Наиболее частая причина первичного нагрева, вызывающего возгорание, — короткое замыкание, которое может произойти, например, в результате внешних повреждений. Кроме того, при использовании в холодных условиях или при высоких токах заряда-разряда в аккумуляторах могут появляться литиевые дендриты — тонкие усики лития, которые могут замкнуть устройство. Ни один производитель не гарантирует, что замыкания не произойдет, и поэтому аккумулятору нужна защита от возгорания.

Ученые из Санкт-Петербургского государственного университета (Санкт-Петербург) разработали полимер, способный предотвратить возгорание аккумулятора при замыкании. Это соединение представляет собой органические цепочки, содержащие атомы никеля. В стандартных условиях полимер проводит электрический ток, но при окислении или восстановлении переходит в другое химическое состояние и теряет эту способность.

Авторы нанесли тонкий слой такого вещества между слоями алюминиевой проводящей электричество фольги и катодным веществом. В случае обычного аккумулятора, если напряжение в цепи увеличивается — это может случиться, когда, например, устройство заряжается с большим напряжением от розетки, чем положено, — то без защиты аккумулятор вздувается, разрушается и может даже загореться. В аккумуляторе с нанесенным слоем полимера в таком случае цепь сразу разомкнется — при чрезмерном напряжении вещество перестает проводить ток, а значит, риски возгорания и взрыва исключены. То же самое происходит при коротком замыкании: полимер перестает проводить ток, когда аккумулятор разряжается ниже определенного предела. Благодаря такой методике можно гарантировать защиту от самовозгорания.

Ученые провели стресс-тесты на аккумуляторах-монетах — маленьких батареях размером с монету, которые используются в умных часах. Проверка показала, что, если напряжение выходило за пределы диапазона от 2,8 Вольт (при этих значениях останавливается разрядка аккумуляторов) до 5 Вольт (напряжение зарядного устройства для смартфонов), защита срабатывала со 100% эффективностью. Кроме того, полимерный слой практически не повлиял на емкость и производительность аккумулятора, снизив их не более чем на 10%.

«Сейчас мы стремимся масштабировать производство литий-ионных аккумуляторов с нашим полимерным слоем, есть переговоры с инвесторами. Пока что мы провели стресс-тесты только на маленьких аккумуляторах, но в будущем мы планируем проверить нашу технологию на большом — используемом, например, для телефона — и после этого запустить серийное производство новых безопасных аккумуляторов», — рассказал исполнитель проекта, поддержанного грантом РНФ, Олег Левин, доктор химических наук, профессор кафедры электрохимии Санкт-Петербургского государственного университета.

Результаты исследования, поддержанного грантом РНФ, опубликованы в журнале ACS Applied Energy Materials.

Source:  Пресс-служба РНФ

News article publications

Read also

Усовершенствован анализ качества растворителей литий-ионных аккумуляторов
Литий-ионные аккумуляторы нашли широкое применение в нашей жизни: от бытовой техники и электромобилей до накопителей энергии в системах жизнеобеспечения труднодоступных районов. Они хорошо зарекомендовали себя в работе, имея высокую плотность энергии и низкий саморазряд. В достижении наилучших характеристик аккумуляторов огромную роль играет состав раствора электролита. Ученые МФТИ и ОИВТ РАН разработали более быстрый и надежный метод проверки состава на молекулярном уровне, который может обеспечить максимальный КПД.
"Green" chemistry
"Green" technologies
Electrochemistry
Molecular modeling
19 October 2023
Марганцевый катализатор упростит получение и хранение водородного топлива
Ученые создали катализатор на основе марганца для получения водорода из амин-боранов — твердых стабильных органических соединений. Такая реакция позволит использовать амин-бораны в «зеленой» энергетике для хранения и транспортировки водородного топлива. Предложенный катализатор в десятки раз эффективнее высвобождает водород, чем большинство известных комплексов на основе благородных металлов.
"Green" chemistry
"Green" technologies
Catalysis
17 February 2024
Катализаторы с железом и марганцем ускорят реакции для получения электроэнергии
Ученые синтезировали соединение, которое ускоряет химическую реакцию, лежащую в основе получения электроэнергии в экологически чистых топливных элементах. В состав разработанного катализатора входят железо и марганец. Эти металлы доступны и нетоксичны, поэтому полученное вещество может стать хорошей альтернативой широко применяемым сегодня платиновым катализаторам.
"Green" chemistry
"Green" technologies
Synthesis
30 October 2023
Химики предложили новый растворитель для переработки аккумуляторов
В этом качестве выступили так называемые глубокие эвтектические растворители: смесь двух органических веществ, которую можно настроить на извлечение из раствора необходимых элементов
"Green" chemistry
"Green" technologies
Chemical technology
19 December 2022
Зловредный борщевик превратили в материал для батарей в зелёной энергетике
Ученые сделали из сорняка высококачественный углеродный материал для анодов натрий-ионных батарей.
"Green" chemistry
Electrochemistry
Materials Science
12 October 2022
Ученые усовершенствовали метод получения биотоплива из растительных отходов
Предложенная технология позволяет задействовать воду, которая содержится в бионефти, в качестве источника водорода для облагораживания сырья и улучшения его свойств.
"Green" chemistry
"Green" technologies
Bioenergy
27 April 2022