7 December 2023, 12:00

Восстановлена трехмерная структура межзвездной среды в рукаве Персея

Пространство между звездами частично заполнено газопылевыми облаками. Именно в них рождаются новые светила, в том числе и массивные звезды — немногочисленные объекты с массой, превосходящей солнечную в 10 и более раз. Жесткое излучение горячих массивных звезд ионизует газопылевые облака, и поэтому вокруг таких звезд формируются области ионизованного газа, состоящего в основном из водорода. На небе эти области видны как светлые туманности разнообразной формы.

Восстановлена трехмерная структура межзвездной среды в рукаве Персея

На данный момент особенно хорошо изучена самая близкая к Солнцу зона образования массивных звезд и область ионизации вокруг нее — так называемая область ионизованного водорода вокруг звезд скопления Трапеции в созвездии Ориона. Но для понимания структуры межзвездной среды и влияния массивных звезд на нее важно изучать и другие подобные области. При этом астрономам доступны только наблюдения, они не могут поставить над своими объектами эксперименты, поэтому, изучая межзвездную среду в картинной плоскости неба, они вынуждены придумывать способы восстановления трехмерной структуры межзвездного вещества, в частности газопылевых облаков и ионизованных туманностей.

Ученые из Института астрономии РАН (Москва) исследовали трехмерную структуру трех областей ионизованного водорода (S255, S256 и S257) и холодных молекулярных облаков вокруг них в спиральном рукаве Персея — одном из скоплений звезд, газа и пыли в Млечном пути. В этих областях активно образуются новые звезды, масса которых в 10–15 раз превосходит солнечную. Для наблюдений авторы использовали телескопы Цейсс-1000 и БТА  Специальной астрофизической обсерватории РАН. Проанализировав спектральные линии ионизованных атомов — водорода, серы, азота и кислорода, — авторы определили количество газопылевого вещества между областями ионизации и наблюдателем. Кроме того, используя архивные данные инфракрасного телескопа «Гершель», астрономы оценили, сколько газопылевого вещества находится позади туманностей. Так ученые восстановили трехмерную структуру изученных объектов и показали, что область S255 со всех сторон окружена неоднородным газопылевым облаком, а область S257 находится на его краю.

По структуре область ионизации S255 напоминает сферический слой, полупустой внутри и плотный снаружи. Это указывает на то, что звезда в S255 обладает мощным звездным ветром — потоком быстрых частиц водорода и гелия, срывающимся с поверхности звезды и улетающим в межзвездное пространство. Ветер вносит вклад в формирование ионизованных туманностей, выдувая газ из ближайших окрестностей звезды. В области ионизации S257 подобной структуры не наблюдается, в ней ионизованный газ распределяется более равномерно. Возможно, масса звезды в S257 недостаточна для формирования мощного ветра, или звезда изначально образовалась на краю газопылевого облака, и поэтому действие ветра на газ не заметно для наблюдателя. Чтобы напрямую увидеть области, охваченные звездным ветром, наблюдений в оптическом диапазоне недостаточно, необходимо привлекать данные из ультрафиолетового и рентгеновского диапазонов.

«Мы изучили пространственную структуру трех областей ионизированного водорода и нашли свидетельства звездного ветра в одной из них. В дальнейшем мы планируем создать атлас ярких ионизованных областей северного неба, которые имеют разные формы и образованы различными типами звезд. Мы хотим восстановить пространственную трехмерную структуру этих объектов, определить физические условия в них и оценить вклад звездного ветра в процесс образования туманностей», — рассказывает один из исполнителей проекта, поддержанного грантом РНФ, Мария Кирсанова, старший научный сотрудник ИНАСАН.

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Monthly Notices of the Royal Astronomical Society.

Source:  Пресс-служба РНФ

News article publications

Read also

Астрономы нашли новый способ измерять массу черных дыр
Полученные значения согласовывались с ранее рассчитанными и даже уточняли их. Также авторы предполагают, что их подход позволит пересмотреть количество открытых черных дыр во Вселенной
Astronomy
Astrophysics
New techniques
26 April 2023
Обнаружены новые особенности спирального антиферромагнетика GdRu2Si2
Международная команда физиков изучила энергетическую структуру спирального антиферромагнетика GdRu2Si2. Были обнаружены новые особенности, что позволит улучшить приборы, использующие магнитную память.
Materials Science
Nanotechnology
Spectroscopy
26 December 2023
Молекулы жиров в клетках помогут диагностировать рак кожи с точностью 95%
Ученые предложили выявлять рак кожи с помощью оптического метода, позволяющего неинвазивно анализировать биомаркеры заболевания в клетках. Используя в качестве таких биомаркеров молекулы жиров в составе клеточных мембран, авторам удалось с точностью более 95% отличить здоровую кожу от ткани с новообразованиями. Предложенный подход поможет улучшить диагностику рака кожи на ранних стадиях.
Biomedicine
Cancer Research
Spectroscopy
1 November 2023
Перфторированные дикетоны улучшат технологию добычи редкоземельных металлов
Красноярский ученый изучил взаимодействия перфторированных дикетонов с редкоземельными металлами и обнаружил несколько интересных закономерностей. Понимание этих процессов позволит более эффективно разделять и получать редкоземельные металлы.
Chemical technology
Metals and their alloys
Spectroscopy
27 October 2023
Новый метод для описания молекулярного взаимодействия между фикобилисомой
Ученые из ФИЦ Биотехнологии РАН использовали необычный вариант флуоресцентной спектроскопии для описания особенностей молекулярного взаимодействия между фикобилисомой — сложным белковым комплексом, улавливающим свет в клетках цианобактерий и красных водорослей, — и оранжевым каротиноидным белком, защищающим фотосинтетический аппарат от интенсивного солнечного излучения. Каротиноидный белок, изменяя свою конформацию, препятствует передаче энергии от фикобилисомы на хлорофилл фотосистем. Изучение этой реакции является сложной задачей из-за многоступенчатого переноса энергии между сотнями пигментов «антенны». Оказалось, что этот процесс можно значительно упростить, используя инфракрасные лазеры.
Molecular Biology
Photosynthesis
Spectroscopy
5 October 2023
Добавление фтора на 56% повысило свечение молекул для OLED-светодиодов
Повысить эффективность свечения металлоорганических комплексов, используемых в OLED-светодиодах, можно, в частности, введя в молекулу большое количество атомов фтора. К такому выводу ученые пришли на основе экспериментов, которые показали, что соединения с тринадцатью атомами фтора в два раза эффективнее преобразуют подаваемую на них энергию в свет, чем те, что содержат только четыре атома фтора. Это наблюдение позволит создать более энергоэкономичные и эффективные светодиоды для бытовой техники и наноизлучателей.
Molecular Physics
Spectroscopy
Synthesis
4 October 2023