4 October 2023, 12:00

Добавление фтора на 56% повысило свечение молекул для OLED-светодиодов

OLED-светодиоды широко используются в технике. Так, например, дисплеи на их основе применяются в смартфонах, цифровых фотоаппаратах, автомобильных бортовых компьютерах и телевизорах. Излучение OLED обусловлено органическими соединениями или их комплексами с металлами, которые при действии электрического тока или внешнего света начинают самостоятельно светиться в определенном диапазоне — люминесцировать. В качестве светоизлучающих материалов для OLED-светодиодов перспективны соединения ионов металлов с β-дикетонами — кислородсодержащими органическими молекулами. Они удобны тем, что цвет и интенсивность их свечения можно менять на этапе синтеза. Однако такие комплексы имеют довольно низкую эффективность люминесценции: большая часть поступающей на них энергии (световой или электрической) рассеивается в виде тепла, а в излучение преобразуется лишь около нескольких процентов. Исследования показали, что исправить ситуацию помогает введение в состав комплексов атомов фтора.

Добавление фтора на 56% повысило свечение молекул для OLED-светодиодов

Ученые из Физического института имени П. Н. Лебедева РАН (Москва), Института спектроскопии РАН (Москва) с коллегами из Бразилии синтезировали и подробно изучили свойства шести ранее не известных полифторированных комплексов β-дикетонов с ионом европия — металла из группы лантаноидов. Соединения различались длиной фторированной углеродной цепи в органической молекуле, то есть количеством атомов фтора. В каждой из трех органических молекул-лигандов, окружающих центральный ион европия, их было три, четыре, семь или тринадцать.

Чтобы оценить влияние атомов фтора на люминесценцию комплексов, авторы освещали растворы соединений очень короткими импульсами лазерного излучения и измеряли эффективность излучения и динамику переходных процессов в молекулах комплексов. Оказалось, что увеличение числа атомов фтора в молекуле приводит к значительному росту эффективности свечения. Так, комплексы, содержащие тринадцать атомов этого элемента, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами фтора. Таким образом, авторам удалось повысить квантовый выход люминесценции до 56%, что сопоставимо с лучшими представителями данного класса материалов. Синтезированные соединения имеют хороший потенциал для использования в качестве излучателей красного свечения для различных электролюминесцентных устройств.

Экспериментальные результаты также были подтверждены комплексом расчетных методов. Квантово-химические расчеты показали, что в комплексах с большим числом атомов фтора быстрее происходит перенос энергии между металлом и органической молекулой. Это приводит к тому, что энергия, подаваемая на соединение извне, преобразуется в свечение более эффективно.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых координационных соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, значительная потребность в которых существует в современной быстро развивающейся технике. В дальнейшем мы планируем расширить область исследования фторсодержащих комплексных соединений на другие ионы лантаноидов, чтобы научиться направленно создавать эффективные люминесцентные материалы с заданными свойствами», — рассказывает руководитель проекта, поддержанного грантом РНФ, Илья Тайдаков, доктор химических наук, руководитель лаборатории «Молекулярная спектроскопия люминесцентных материалов» Отдела спектроскопии ФИАН.

Результаты исследования, поддержанного Российским научным фондом (РНФ), опубликованы в журнале Dyes and Pigments.

Source:  Пресс-служба РНФ

News article publications

Read also

Разработана модель, описывающая механизмы формирования плазменных нитей
Ученые разработали самосогласованную электродинамическую модель, которая описывает условия формирования в микроволновых разрядах атмосферного давления плазменных филаментов — тонких нитей в газе с повышенной электронной плотностью и температурой. Такие разряды используются в плазмохимии для высокоэффективного синтеза азотных удобрений, водорода, а также объемных наноструктур, например углеродных нанотрубок, широко используемых в электронике и оптике. Предложенная модель поможет усовершенствовать микроволновые источники плазмы атмосферного давления.
Electrodynamics
Plasma Physics
Synthesis
27 March 2024
Полимер из панцирей крабов поможет понять механизм борьбы со стрессом у томатов
Ученые из ФИЦ Биотехнологии РАН выяснили, что эффект, оказываемый на томаты природным полимером хитозаном, получаемым из панцирей ракообразных, в частности, крабов, зависит от его концентрации и периода воздействия. Ранее было известно, что это соединение повышает стрессоустойчивость взрослых растений, но молекулярный механизм этого влияния до сих пор оставался не до конца исследованным. Новые данные позволят использовать хитозан в качестве модулятора устойчивости к стрессу у сельскохозяйственных культур, в частности, растений томата.
Agricultural sciences
Botany
Synthesis
23 March 2024
Органические ионы сделают синтез азотсодержащих веществ экологичнее
Химики успешно опробовали органические катализаторы, с помощью которых можно переносить атомы водорода от одной молекулы к другой. Этот процесс широко используется в фармацевтике при производстве лекарств. Обнаруженное свойство позволит существенно расширить область применения таких катализаторов и заменить токсичные аналоги на основе тяжелых металлов во многих сферах, требующих химического синтеза.
"Green" chemistry
Organic Chemistry
Synthesis
21 March 2024
Исследованы свойства нового ферромагнетика
Команда физиков из Центра фотоники и двумерных материалов МФТИ исследовала электронные и магнитные свойства нового соединения Fe2C. Рассчитанные значения обменных взаимодействий и температуры магнитного перехода этого вещества указывают на наличие у этого материала ряда особых свойств. Теоретическое исследование показывает актуальность синтеза указанного вещества, ставя новые задачи перед экспериментаторами и инженерами.
Materials Science
Spintronics
Synthesis
31 January 2024
Катализаторы из винной кислоты повысят оптическую чистоту органических молекул
Ученые создали металлокомплексные катализаторы на основе палладия и органических молекул, содержащих атомы серы и фосфора. Использование этих катализаторов позволяет получать соединения с оптической чистотой до 99%. Оптическая чистота важна при производстве лекарств, витаминов и пестицидов, поскольку она влияет на их биологическую активность.
Catalysis
Organic Chemistry
Synthesis
25 January 2024
Три металла и новая технология упростят получение ненасыщенных спиртов
Ученые синтезировали катализатор на основе наночастиц платины, оксидов церия и циркония, который позволяет превращать ненасыщенные альдегиды в ненасыщенные спирты. Такая реакция нужна при создании духов, отдушек и лекарств. При использовании нового катализатора избирательность и эффективность процесса достигли 100%. Это значит, что при синтезе протекала только необходимая ученым реакция, после которой не оставалось побочных продуктов.
Catalysis
Nanotechnology
Synthesis
23 January 2024