Open Access
Ecology and Evolution, volume 9, issue 18, pages 10305-10316
The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera)
Rebecca J Wilson
1, 2
,
STEPHEN J. BROOKS
2
,
Phillip B. Fenberg
1, 2
2
Department of Life Sciences Natural History Museum London UK
|
Publication type: Journal Article
Publication date: 2019-08-14
Journal:
Ecology and Evolution
scimago Q1
wos Q2
SJR: 0.858
CiteScore: 4.0
Impact factor: 2.3
ISSN: 20457758
PubMed ID:
31632644
Ecology, Evolution, Behavior and Systematics
Ecology
Nature and Landscape Conservation
Abstract
Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature-size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature-size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature-size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature-size responses for species with complex life cycles.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
20
Total citations:
20
Citations from 2024:
8
(40%)