том 1607 страницы 460395

A deep convolutional neural network for the estimation of gas chromatographic retention indices

Тип публикацииJournal Article
Дата публикации2019-12-01
scimago Q1
wos Q1
БС1
SJR0.731
CiteScore7.3
Impact factor4.0
ISSN00219673, 18733778
Organic Chemistry
Biochemistry
General Medicine
Analytical Chemistry
Краткое описание
A deep convolutional neural network was used for the estimation of gas chromatographic retention indices on non-polar (polydimethylsiloxane and polydimethyl(5%-phenyl) siloxane) stationary phases. The neural network can be used for candidate ranking while searching a mass spectral database. A linear representation (SMILES notation) of the molecule structure was used as an input for the model. The input line was converted to a one-hot matrix and then directly processed by the neural network. The calculation of any common molecular descriptors is avoided, following the modern tendency in machine learning: to allow the neural network to find the most preferable features by itself instead of using hard-coded features. The model has two 1D-convolutional layers with 120 neurons each followed by a pooling layer and a fully-connected layer with 200 hidden neurons. The model was compared with state-of-the-art models for prediction of gas chromatographic indices based on molecular descriptors and on functional groups contributions. On different data sets better accuracy is shown together with greater versatility. The applicability to diverse sets of flavors and fragrances, essential oils, metabolites is shown. The possibility of using the model for improvement of mass spectral identification (without reference retention index) is demonstrated. The median absolute error and the median percentage error are in the range of 17.3 (0.93%) to 38.1 (2.15%) depending on used test data set. Ready-to-use neural network parameters are provided.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Journal of Chromatography A
8 публикаций, 16.67%
Analytical Chemistry
6 публикаций, 12.5%
Molecules
2 публикации, 4.17%
Chemosphere
2 публикации, 4.17%
Resources, Conservation and Recycling
2 публикации, 4.17%
Russian Journal of Physical Chemistry A
2 публикации, 4.17%
Trends in Food Science and Technology
2 публикации, 4.17%
International Journal of Molecular Sciences
1 публикация, 2.08%
Biomedicines
1 публикация, 2.08%
Separations
1 публикация, 2.08%
Chemometrics and Intelligent Laboratory Systems
1 публикация, 2.08%
Chinese Herbal Medicines
1 публикация, 2.08%
Analytica Chimica Acta
1 публикация, 2.08%
Expert Systems
1 публикация, 2.08%
ACS applied materials & interfaces
1 публикация, 2.08%
Russian Chemical Bulletin
1 публикация, 2.08%
IEEE Access
1 публикация, 2.08%
Computational Intelligence and Neuroscience
1 публикация, 2.08%
Contrast Media and Molecular Imaging
1 публикация, 2.08%
Critical Reviews in Analytical Chemistry
1 публикация, 2.08%
Journal of Chemical Information and Modeling
1 публикация, 2.08%
Lecture Notes in Computer Science
1 публикация, 2.08%
Artificial Intelligence Chemistry
1 публикация, 2.08%
Chromatographia
1 публикация, 2.08%
Foods
1 публикация, 2.08%
Horticulturae
1 публикация, 2.08%
Journal of Separation Science
1 публикация, 2.08%
Journal of Pharmaceutical Analysis
1 публикация, 2.08%
Analytica—A Journal of Analytical Chemistry and Chemical Analysis
1 публикация, 2.08%
Chinese Science Bulletin (Chinese Version)
1 публикация, 2.08%
1
2
3
4
5
6
7
8

Издатели

2
4
6
8
10
12
14
16
18
20
Elsevier
19 публикаций, 39.58%
MDPI
8 публикаций, 16.67%
American Chemical Society (ACS)
8 публикаций, 16.67%
Springer Nature
3 публикации, 6.25%
Wiley
2 публикации, 4.17%
Pleiades Publishing
2 публикации, 4.17%
Hindawi Limited
2 публикации, 4.17%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 2.08%
Taylor & Francis
1 публикация, 2.08%
Science in China Press
1 публикация, 2.08%
Royal Society of Chemistry (RSC)
1 публикация, 2.08%
2
4
6
8
10
12
14
16
18
20
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
48
Поделиться
Цитировать
ГОСТ |
Цитировать
Matyushin D. D., Sholokhova A. Yu., Buryak A. K. A deep convolutional neural network for the estimation of gas chromatographic retention indices // Journal of Chromatography A. 2019. Vol. 1607. p. 460395.
ГОСТ со всеми авторами (до 50) Скопировать
Matyushin D. D., Sholokhova A. Yu., Buryak A. K. A deep convolutional neural network for the estimation of gas chromatographic retention indices // Journal of Chromatography A. 2019. Vol. 1607. p. 460395.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.chroma.2019.460395
UR - https://doi.org/10.1016/j.chroma.2019.460395
TI - A deep convolutional neural network for the estimation of gas chromatographic retention indices
T2 - Journal of Chromatography A
AU - Matyushin, Dmitriy D
AU - Sholokhova, Anastasia Yu
AU - Buryak, Aleksey K
PY - 2019
DA - 2019/12/01
PB - Elsevier
SP - 460395
VL - 1607
PMID - 31405570
SN - 0021-9673
SN - 1873-3778
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Matyushin,
author = {Dmitriy D Matyushin and Anastasia Yu Sholokhova and Aleksey K Buryak},
title = {A deep convolutional neural network for the estimation of gas chromatographic retention indices},
journal = {Journal of Chromatography A},
year = {2019},
volume = {1607},
publisher = {Elsevier},
month = {dec},
url = {https://doi.org/10.1016/j.chroma.2019.460395},
pages = {460395},
doi = {10.1016/j.chroma.2019.460395}
}