International Journal of Hygiene and Environmental Health, volume 263, pages 114447

Prenatal and early life exposure to fine particulate matter and telomere length in early childhood

Jesephat Edzie 1
Cecilia S Alcala 1
Tessa R Bloomquist 2
Iván Gutiérrez-Avila 1
Allan Just 3
Vishal Midya 1
Martha Maria Tellez-Rojo 4
Guadalupe Estrada-Gutierrez 5
Rosalind J. Wright 6
Robert D. Wright 6
Maria J. Rosa 8
Show full list: 12 authors
4
 
Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico.
6
 
Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, USA.
Publication typeJournal Article
Publication date2025-01-01
scimago Q1
wos Q1
SJR1.211
CiteScore11.5
Impact factor4.5
ISSN14384639, 1618131X
Abstract
Telomere length is a biomarker of molecular aging that may be impacted by air pollution exposure starting in utero. We aimed to examine the association between prenatal and early life exposure to fine particulate matter (PM
Salih A.M., Galazzo I.B., Menegaz G., Altmann A.
2024-02-06 citations by CoLab: 1 Abstract  
Background Existing research demonstrates the association of shorter leukocyte telomere length with increased risk of age‐related health outcomes including cardiovascular diseases. However, the direct causality of these relationships has not been definitively established. Cardiovascular aging at an organ level may be captured using image‐derived phenotypes of cardiac anatomy and function. Methods and Results In the current study, we use 2‐sample Mendelian randomization to assess the causal link between leukocyte telomere length and 54 cardiac magnetic resonance imaging measures representing structure and function across the 4 cardiac chambers. Genetically predicted shorter leukocyte telomere length was causally linked to smaller ventricular cavity sizes including left ventricular end‐systolic volume, left ventricular end‐diastolic volume, lower left ventricular mass, and pulmonary artery. The association with left ventricular mass ( β  =0.217, P false discovery rate =0.016) remained significant after multiple testing adjustment, whereas other associations were attenuated. Conclusions Our findings support a causal role for shorter leukocyte telomere length and faster cardiac aging, with the most prominent relationship with left ventricular mass.
Halabicky O.M., Téllez-Rojo M.M., Goodrich J.M., Dolinoy D.C., Mercado-García A., Hu H., Peterson K.E.
2024-02-01 citations by CoLab: 6 Abstract  
Few studies have related early life lead exposure to adolescent biological aging, a period characterized by marked increases in maturational tempo. We examined associations between prenatal and childhood lead exposure and adolescent biological age (mean 14.5 years) utilizing multiple epigenetic clocks including: intrinsic (IEAA), extrinsic (EEAA), Horvath, Hannum, PhenoAge, GrimAge, Skin-Blood, Wu, PedBE, as well as DNA methylation derived telomere length (DNAmTL). Epigenetic clocks and DNAmTL were calculated via adolescent blood DNA methylation measured by Infinium MethylationEPIC BeadChips. We constructed general linear models (GLMs) with individual lead measures predicting biological age. We additionally examined sex-stratified models and lead by sex interactions, adjusting for adolescent age and lead levels, maternal smoking and education, and proportion of cell types. We also estimated effects of lead exposure on biological age using generalized estimating equations (GEE). First trimester blood lead was positively associated with a 0.14 increase in EEAA age in the GLMs though not the GEE models (95%CI 0.03, 0.25). First and 2nd trimester blood lead levels were associated with a 0.02 year increase in PedBE age in GLM and GEE models (1st trimester, 95%CI 0.004, 0.03; 2nd trimester, 95%CI 0.01, 0.03). Third trimester and 24 month blood lead levels were associated with a -0.06 and -0.05 decrease in Skin-Blood age, respectively, in GLM models. Additionally, 3rd trimester blood lead levels were associated with a 0.08 year decrease in Hannum age in GLM and GEE models (95%CI -0.15, -0.01). There were multiple significant results in sex-stratified models and significant lead by sex interactions, where males experienced accelerated biological age, compared to females who saw a decelerated biological age, with respect to IEAA, EEAA, Horvath, Hannum, and PedBE clocks. Further research is needed to understand sex-specific relationships between lead exposure and measures of biological aging in adolescence and the trajectory of biological aging into young adulthood.
Gea M., Macrì M., Marangon D., Pitasi F.A., Fontana M., Bonetta S., Schilirò T.
2023-09-01 citations by CoLab: 4 Abstract  
Endocrine disruptors (EDCs) are emerging contaminants that are harmful to health. Human exposure occurs mainly through ingestion or dermal contact, but inhalation could be an additional exposure route; therefore, this study was conducted to evaluate the oestrogenic activity of airborne particulate matter (PM). Outdoor PM was collected for a year in five Italian sites and extracted with organic solvents (four seasonal extracts/site). The oestrogenic activity was assessed using a gene reporter assay (MELN), and the risk to human health through inhalation was quantified using the results. Moreover, extracts were analysed to assess cytotoxicity (WST-1 and LDH assays) on human bronchial cells (BEAS-2B). The extracts induced a significant cytotoxicity and oestrogenic activity. Oestrogenic activity showed a seasonal trend and was correlated with concentrations of benzo(a)pyrene and toxic equivalency factor. Although a low inhalation cancer risk was found, this study confirmed that oestrogenic activity in air could contribute to overall health risks due to EDC exposure.
Zhu X., Li Z., Wang Z., Guo C., Qian Y., Wang Z., Li X., Wei Y.
Chemosphere scimago Q1 wos Q1
2023-09-01 citations by CoLab: 2 Abstract  
Telomere length (TL) is one of the early biomarkers of aging. Air pollutants play an important role in promoting the aging process. However, few studies have explored how they adversely affect human health by altering telomeres. This study aims to investigate the associations between telomere alterations and exposure to ambient air pollutants, thereby shedding light on the intrinsic and profound link between these pollutants and aging. We recruited 26 healthy young people and conducted 7 repeated measure studies from 2019 to 2021, and TL and telomerase (TA) in the blood samples. We analyzed the associations between air pollutants, including ozone (O3), particulate matter in diameter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) and telomere variability, and explored the lagged effects by linear mixed-effects model. The result showed that short-term exposure to O3 was negatively associated with TL, and this effect in the lag days went up to around 0. In contrast, the associations between O3 and TA presented positive tendency and gradually decreased to around 0 in the lag days. The association between PM2.5 and TL showed positive tendency and gradually decreased to negative. There was no statistically significant association between PM2.5 and TA. Other pollutants (PM10, NO2, SO2, CO) showed similar patterns of variation to that of PM2.5. Our findings suggest that short-term exposure to O3 shortens TL, which can be gradually recovered through activating TA activity, while exposure to PM2.5, PM10, NO2, SO2 and CO lengthens TL and then becomes shorter over time. This implies that the human body has some ability to self-repair telomere changes after exposure to air pollutants, and predictably, when this exposure exceeds a certain threshold, it cannot be repaired, leading to aging of the body.
Chen B., Yan Y., Wang H., Xu J.
Aging Cell scimago Q1 wos Q1 Open Access
2023-05-26 citations by CoLab: 30 PDF Abstract  
AbstractEmerging evidence has shown that leukocyte telomere length (LTL) is associated with various health‐related outcomes, while the causality of these associations remains unclear. We performed a systematic review and meta‐analysis of current evidence from Mendelian randomization (MR) studies on the association between LTL and health‐related outcomes. We searched PubMed, Embase, and Web of Science up to April 2022 to identify eligible MR studies. We graded the evidence level of each MR association based on the results of the main analysis and four sensitive MR methods, MR‐Egger, weighted median, MR‐PRESSO, and multivariate MR. Meta‐analyses of published MR studies were also performed. A total of 62 studies with 310 outcomes and 396 MR associations were included. Robust evidence level was observed for the association between longer LTL and increased risk of 24 neoplasms (the strongest magnitude for osteosarcoma, GBM, glioma, thyroid cancer, and non‐GBM glioma), six genitourinary and digestive system outcomes of excessive or abnormal growth, hypertension, metabolic syndrome, multiple sclerosis, and clonal hematopoiesis of indeterminate potential. Robust inverse association was observed for coronary heart disease, chronic kidney disease, rheumatoid arthritis, juvenile idiopathic arthritis, idiopathic pulmonary fibrosis, and facial aging. Meta‐analyses of MR studies suggested that genetically determined LTL was associated with 12 neoplasms and 9 nonneoplasm outcomes. Evidence from published MR studies supports that LTL plays a causal role in various neoplastic and nonneoplastic diseases. Further research is required to elucidate the underlying mechanisms and to bring insight into the potential prediction, prevention, and therapeutic applications of telomere length.
Herrera-Moreno J.F., Prada D., Baccarelli A.A.
2023-03-22 citations by CoLab: 7 Abstract  
Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children’s TL and discuss potential long-term effects. Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals’ health throughout life.
Gheissari R., Liao J., Garcia E., Pavlovic N., Gilliland F.D., Xiang A.H., Chen Z.
Toxics scimago Q1 wos Q1 Open Access
2022-08-08 citations by CoLab: 24 PDF Abstract  
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.
Durham T., Guo J., Cowell W., Riley K.W., Wang S., Tang D., Perera F., Herbstman J.B.
Toxics scimago Q1 wos Q1 Open Access
2022-01-03 citations by CoLab: 11 PDF Abstract  
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is a ubiquitous air pollutant that is increasingly threatening the health of adults and children worldwide. One health impact of elevated PM2.5 exposure is alterations in telomere length (TL)—protective caps on chromosome ends that shorten with each cell division. Few analyses involve prenatal PM2.5 exposure, and paired maternal and cord TL measurements. Here, we analyzed the association between average and trimester-specific prenatal PM2.5 exposure, and maternal and newborn relative leukocyte TL measured at birth among 193 mothers and their newborns enrolled in a New-York-City-based birth cohort. Results indicated an overall negative relationship between prenatal PM2.5 and maternal TL at delivery, with a significant association observed in the second trimester (β = −0.039, 95% CI: −0.074, −0.003). PM2.5 exposure in trimester two was also inversely related to cord TL; however, this result did not reach statistical significance (β = −0.037, 95% CI: −0.114, 0.039), and no clear pattern emerged between PM2.5 and cord TL across the different exposure periods. Our analysis contributes to a limited body of research on ambient air pollution and human telomeres, and emphasizes the need for continued investigation into how PM2.5 exposure during pregnancy influences maternal and newborn health.
Gutiérrez‐Avila I., Arfer K.B., Wong S., Rush J., Kloog I., Just A.C.
2021-03-18 citations by CoLab: 17 Abstract  
While weather stations generally capture near-surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta-related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite-based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA's MODIS instruments on the Aqua and Terra satellites on a 1 × 1 km grid. We generated a satellite-hybrid mixed-effects model for each year, regressing Ta measurements against land use terms, day-specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10-fold cross-validation at withheld stations. Across all years, the root-mean-square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ≥65 years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high-quality Ta estimates for epidemiology studies in the MCM region.
Cheng F., Carroll L., Joglekar M.V., Januszewski A.S., Wong K.K., Hardikar A.A., Jenkins A.J., Ma R.C.
2021-02-01 citations by CoLab: 129 Abstract  
Summary Telomeres are regions of repetitive nucleotide sequences at the ends of chromosomes. Telomere length is a marker of DNA damage, which is often considered a biomarker for biological ageing, and has also been linked with cardiovascular disease, diabetes, and cancer. Emerging studies have highlighted the role of genetic and environmental factors, and explored the effect of modulating telomere length. We provide an overview of studies to date on diabetes and telomere length, and compare different methods and assays for evaluating telomere length and telomerase activity. We highlight the limitations of current studies and areas that warrant further research to unravel the link between diabetes and telomere length. The value of adding telomere length to clinical risk factors to improve risk prediction of diabetes and related complications also merits further investigation.
Harnung Scholten R., Møller P., Jovanovic Andersen Z., Dehlendorff C., Khan J., Brandt J., Ketzel M., Knudsen L.E., Mathiesen L.
Environmental International scimago Q1 wos Q1 Open Access
2021-01-01 citations by CoLab: 36 Abstract  
• Air pollution during pregnancy associated with telomere length (TL) in newborns. • Second trimester air pollution positively associated with umbilical cord blood TL. • Third trimester air pollution inversely associated with umbilical cord blood TL. • Air pollution at home and work show similar association with umbilical cord blood TL. • No association between air pollution and TL in placenta or maternal blood. Telomere length (TL) is a biomarker of biological aging that may be affected by prenatal exposure to air pollution. The aim of this study was to assess the association between prenatal exposure to air pollution and TL in maternal blood cells (leukocytes), placenta and umbilical cord blood cells, sampled immediately after birth in 296 Danish mother-child pairs from a birth cohort. Exposure data was obtained using the high-resolution and spatial–temporal air pollution modeling system DEHM-UBM-AirGIS for PM 2.5 , PM 10 , SO 2 , NH 4 + , black carbon (BC), organic carbon (OC), CO, O 3 , NO 2 , and NO x at residential and occupational addresses of the participating women for the full duration of the pregnancy. The association between prenatal exposure to air pollutants and TL was investigated using distributed lag models. There were significant and positive associations between TL in umbilical cord blood cells and prenatal exposure to BC, OC, NO 2 , NO x , CO, and O 3 during the second trimester. TL in umbilical cord blood was significantly and inversely associated with prenatal exposure to PM 2.5 , BC, OC, SO 2 , NH 4 + , CO and NO 2 during the third trimester. There were similar inverse associations between TL from umbilical cord blood cells and air pollution exposure at the residential and occupational addresses. There were weaker or no associations between air pollution exposure and TL in placenta tissue and maternal blood cells. In conclusion, both the second and third trimesters of pregnancy are shown to be sensitive windows of exposure to air pollution affecting fetal TL.
Lee A.G., Cowell W., Kannan S., Ganguri H.B., Nentin F., Wilson A., Coull B.A., Wright R.O., Baccarelli A., Bollati V., Wright R.J.
Environmental Research scimago Q1 wos Q1
2020-08-01 citations by CoLab: 43 Abstract  
Background Evidence links gestational exposure to particulate matter with an aerodynamic diameter of less than 2.5 microns (PM2.5) with changes in leukocyte telomere length in cord blood with some studies showing sex-specific effects. PM2.5 exposure in utero increases oxidative stress, which can impact telomere biology. Thus, maternal antioxidant intakes may also modify the particulate air pollution effects. Methods We examined associations among prenatal PM2.5 exposure and newborn relative leukocyte telomere length (rLTL), and the modifying effects of maternal antioxidant intake and infant sex. We estimated daily PM2.5 exposures over gestation using a validated spatiotemporally resolved satellite-based model. Maternal dietary and supplemental antioxidant intakes over the prior three months were ascertained during the second trimester using the modified Block98 food frequency questionnaire; high and low antioxidant intakes were categorized based on a median split. We employed Bayesian distributed lag interaction models (BDLIMs) to identify both sensitive windows of exposure and cumulative effect estimates for prenatal PM2.5 exposure on newborn rLTL, and to examine effect modification by maternal antioxidant intakes. A 3-way interaction between PM2.5, maternal antioxidant intake and infant sex was also explored. Results For the main effect of PM2.5, BDLIMs identified a sensitive window at 12-20 weeks gestation for the association between increased prenatal PM2.5 exposure and shorter newborn rLTL and a cumulative effect of PM2.5 over gestation on newborn telomere length [cumulative effect estimate (CEE) = -0.29 (95% CI -0.49 to -0.10) per 1 μg / m 3 increase in PM2.5]. In models examining maternal antioxidant intake effects, BDLIMs found that children born to mothers reporting low antioxidant intakes were most vulnerable [CEE of low maternal antioxidant intake = -0.31 (95% CI -0.55 to -0.06) vs high maternal antioxidant intake = -0.07 (95% CI -0.34 to 0.17) per 1 μg / m 3 increase in PM2.5]. In exploratory models examining effect modification by both maternal antioxidant intakes and infant sex, the cumulative effect remained significant only in boys whose mothers reported low antioxidant intakes [CEE = -0.38 (95% CI -0.80 to -0.004)]; no sensitive windows were identified in any group. Conclusions Prenatal PM2.5 exposure in mid-gestation was associated with reduced infant telomere length. Higher maternal antioxidant intakes mitigated these effects.
Kim J.B., Prunicki M., Haddad F., Dant C., Sampath V., Patel R., Smith E., Akdis C., Balmes J., Snyder M.P., Wu J.C., Nadeau K.C.
2020-03-15 citations by CoLab: 82 Abstract  
Abstract The disease burden associated with air pollution continues to grow. The World Health Organization (WHO) estimates ≈7 million people worldwide die yearly from exposure to polluted air, half of which—3.3 million—are attributable to cardiovascular disease (CVD), greater than from major modifiable CVD risks including smoking, hypertension, hyperlipidemia, and diabetes mellitus. This serious and growing health threat is attributed to increasing urbanization of the world's populations with consequent exposure to polluted air. Especially vulnerable are the elderly, patients with pre‐existing CVD, and children. The cumulative lifetime burden in children is particularly of concern because their rapidly developing cardiopulmonary systems are more susceptible to damage and they spend more time outdoors and therefore inhale more pollutants. World Health Organization estimates that 93% of the world's children aged <15 years—1.8 billion children—breathe air that puts their health and development at risk. Here, we present growing scientific evidence, including from our own group, that chronic exposure to air pollution early in life is directly linked to development of major CVD risks, including obesity, hypertension, and metabolic disorders. In this review, we surveyed the literature for current knowledge of how pollution exposure early in life adversely impacts cardiovascular phenotypes, and lay the foundation for early intervention and other strategies that can help prevent this damage. We also discuss the need for better guidelines and additional research to validate exposure metrics and interventions that will ultimately help healthcare providers reduce the growing burden of CVD from pollution.
Clemente D.B., Vrijheid M., Martens D.S., Bustamante M., Chatzi L., Danileviciute A., de Castro M., Grazuleviciene R., Gutzkow K.B., Lepeule J., Maitre L., McEachan R.R., Robinson O., Schwarze P.E., Tamayo I., et. al.
2019-08-08 citations by CoLab: 42 Abstract  
Telomere length is a molecular marker of biological aging.Here we investigated whether early-life exposure to residential air pollution was associated with leukocyte telomere length (LTL) at 8 y of age.In a multicenter European birth cohort study, HELIX (Human Early Life Exposome) ([Formula: see text]), we estimated prenatal and 1-y childhood exposure to nitrogen dioxide ([Formula: see text]), particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]), and proximity to major roads. Average relative LTL was measured using quantitative real-time polymerase chain reaction (qPCR). Effect estimates of the association between LTL and prenatal, 1-y childhood air pollution, and proximity to major roads were calculated using multiple linear mixed models with a random cohort effect and adjusted for relevant covariates.LTL was inversely associated with prenatal and 1-y childhood [Formula: see text] and [Formula: see text] exposures levels. Each standard deviation (SD) increase in prenatal [Formula: see text] was associated with a [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) change in LTL. Prenatal [Formula: see text] was nonsignificantly associated with LTL ([Formula: see text] per SD increase; 95% CI: [Formula: see text], 0.6). For each SD increment in 1-y childhood [Formula: see text] and [Formula: see text] exposure, LTL shortened by [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) and [Formula: see text] (95% CI: [Formula: see text], 0.1), respectively. Each doubling in residential distance to nearest major road during childhood was associated with a 1.6% (95% CI: 0.02, 3.1) lengthening in LTL.Lower exposures to air pollution during pregnancy and childhood were associated with longer telomeres in European children at 8 y of age. These results suggest that reductions in traffic-related air pollution may promote molecular longevity, as exemplified by telomere length, from early life onward. https://doi.org/10.1289/EHP4148.
Song L., Zhang B., Liu B., Wu M., Zhang L., Wang L., Xu S., Cao Z., Wang Y.
Environmental International scimago Q1 wos Q1 Open Access
2019-07-01 citations by CoLab: 44 Abstract  
Telomere length (TL) is considered as a surrogate of biological aging and has been related to aging-related diseases. The initial setting of newborn TL has important implications for telomere dynamics in adulthood, and is affected by the intrauterine environment. However, the effects of prenatal air pollution exposure on the initial setting of newborn TL are poor understood.We aimed to explore the trimester-specific relationships between maternal air pollution exposure and newborn TL.Between November 2013 and March 2015, a total of 762 mother-newborn pairs were recruited in a birth cohort study in Wuhan, China. Relative cord blood TL was assessed using quantitative real-time polymerase chain reaction. Maternal exposures to PM2.5, PM10, SO2, CO, and NO2, were determined using spatial-temporal land use regression models. Multiple informant models were applied to explore the trimester-specific associations of maternal air pollution exposure with cord blood TL.In single-pollutant models, a 10 μg/m3 increase in PM2.5, PM10, SO2, and a 100 μg/m3 increase in CO during the third trimester were related to 3.71% (95% confidence interval [CI]: -6.06%, -1.30%), 3.24% (95% CI: -5.29%, -1.14%), 11.07% (95% CI: -18.86%, -2.53%), and 3.67% (95% CI: -6.27%, -1.00%) shorter cord blood TL, respectively. The inverse relationships between exposures to PM2.5, PM10, SO2, and CO during the third trimester and cord blood TL were more evident in male infants. In multi-pollutant models, exposures to PM2.5 and PM10 during the third trimester were both related to shorter cord blood TL, but not SO2 and CO.This study suggested that maternal exposures to PM2.5, PM10, CO, and SO2 during the third trimester were related to shorter newborn TL, which highlights the importance of improving air quality in favor of subsequent health in later life of newborns.
Calderón-Garcidueñas L., González-Maciel A., Reynoso-Robles R., Cejudo-Ruiz F.R., Silva-Pereyra H.G., Gorzalski A., Torres-Jardón R.
Toxics scimago Q1 wos Q1 Open Access
2025-02-28 citations by CoLab: 0 PDF Abstract  
Billions of people are exposed to fine particulate matter (PM2.5) levels above the USEPA’s annual standard of 9 μg/m3. Common emission sources are anthropogenic, producing complex aerosolized toxins. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) have major detrimental effects on the brain, but the USA does not measure UFPM on a routine basis. This review focuses on the development and progression of common neurodegenerative diseases, as diagnosed through neuropathology, among young residents in Metropolitan Mexico City (MMC). MMC is one of the most polluted megacities in the world, with a population of 22 million residents, many of whom are unaware of the brain effects caused by their polluted atmosphere. Fatal neurodegenerative diseases (such as Alzheimer’s and Parkinson’s) that begin in childhood in populations living in air polluted environments are preventable. We conclude that UFPM/NPs are capable of disrupting neural homeostasis and give rise to relentless neurodegenerative processes throughout the entire life of the highly exposed population in MMC. The paradigm of reaching old age to have neurodegeneration is no longer supported. Neurodegenerative changes start early in pediatric ages and are irreversible. It is time to invest in preventive medicine.

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?