том 92 издание 1 страницы 588-592

Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data

Тип публикацииJournal Article
Дата публикации2019-12-16
scimago Q1
wos Q1
БС1
SJR1.533
CiteScore11.6
Impact factor6.7
ISSN00032700, 15206882, 21542686
Analytical Chemistry
Краткое описание
This letter is devoted to the application of machine learning, namely, convolutional neural networks to solve problems in the initial steps of the common pipeline for data analysis in metabolomics. These steps are the peak detection and the peak integration in raw liquid chromatography-mass spectrometry (LC-MS) data. Widely used algorithms suffer from rather poor precision for these tasks, yielding many false positive signals. In the present work, we developed an algorithm named peakonly, which has high flexibility for the detection or exclusion of low-intensity noisy peaks, and shows excellent quality in the detection of true positive peaks, approaching the highest possible precision. The current approach was developed for the analysis of high-resolution LC-MS data for the purposes of metabolomics, but potentially it can be applied with several adaptations in other fields, which utilize high-resolution GC- or LC-MS techniques. Peakonly is freely available on GitHub ( https://github.com/arseha/peakonly ) under an MIT license.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
16
18
Analytical Chemistry
18 публикаций, 11.61%
Journal of Chromatography A
10 публикаций, 6.45%
Chemometrics and Intelligent Laboratory Systems
6 публикаций, 3.87%
Metabolites
5 публикаций, 3.23%
TrAC - Trends in Analytical Chemistry
5 публикаций, 3.23%
Briefings in Bioinformatics
5 публикаций, 3.23%
Trends in Food Science and Technology
3 публикации, 1.94%
Molecules
2 публикации, 1.29%
Foods
2 публикации, 1.29%
Sensors
2 публикации, 1.29%
Biotechnology Advances
2 публикации, 1.29%
Computational and Structural Biotechnology Journal
2 публикации, 1.29%
Analytica Chimica Acta
2 публикации, 1.29%
Environmental Science Advances
2 публикации, 1.29%
Analytical Methods
2 публикации, 1.29%
Bioinformatics
2 публикации, 1.29%
Environmental Science & Technology
2 публикации, 1.29%
Journal of Separation Science
2 публикации, 1.29%
Microchemical Journal
2 публикации, 1.29%
ACS Omega
2 публикации, 1.29%
Artificial Intelligence Review
1 публикация, 0.65%
Frontiers in Computational Neuroscience
1 публикация, 0.65%
Biomolecules
1 публикация, 0.65%
Frontiers in Molecular Biosciences
1 публикация, 0.65%
International Journal of Molecular Sciences
1 публикация, 0.65%
Experimental and Molecular Medicine
1 публикация, 0.65%
Metabolomics
1 публикация, 0.65%
Scientific Reports
1 публикация, 0.65%
Stem Cell Reviews and Reports
1 публикация, 0.65%
2
4
6
8
10
12
14
16
18

Издатели

5
10
15
20
25
30
35
40
45
50
Elsevier
47 публикаций, 30.32%
American Chemical Society (ACS)
24 публикации, 15.48%
MDPI
14 публикаций, 9.03%
Springer Nature
13 публикаций, 8.39%
Institute of Electrical and Electronics Engineers (IEEE)
10 публикаций, 6.45%
Wiley
9 публикаций, 5.81%
Oxford University Press
8 публикаций, 5.16%
Royal Society of Chemistry (RSC)
7 публикаций, 4.52%
Cold Spring Harbor Laboratory
7 публикаций, 4.52%
Frontiers Media S.A.
4 публикации, 2.58%
Taylor & Francis
4 публикации, 2.58%
IOP Publishing
1 публикация, 0.65%
International Union of Crystallography (IUCr)
1 публикация, 0.65%
American Association for Clinical Chemistry
1 публикация, 0.65%
Optica Publishing Group
1 публикация, 0.65%
Association for Computing Machinery (ACM)
1 публикация, 0.65%
Science in China Press
1 публикация, 0.65%
Pleiades Publishing
1 публикация, 0.65%
Hans Publishers
1 публикация, 0.65%
5
10
15
20
25
30
35
40
45
50
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
156
Поделиться
Цитировать
ГОСТ |
Цитировать
Melnikov A. D. et al. Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data // Analytical Chemistry. 2019. Vol. 92. No. 1. pp. 588-592.
ГОСТ со всеми авторами (до 50) Скопировать
Melnikov A. D., Tsentalovich Y. P., Yanshole V. V. Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data // Analytical Chemistry. 2019. Vol. 92. No. 1. pp. 588-592.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.analchem.9b04811
UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b04811
TI - Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data
T2 - Analytical Chemistry
AU - Melnikov, Arsenty D
AU - Tsentalovich, Yuri P
AU - Yanshole, Vadim V
PY - 2019
DA - 2019/12/16
PB - American Chemical Society (ACS)
SP - 588-592
IS - 1
VL - 92
PMID - 31841624
SN - 0003-2700
SN - 1520-6882
SN - 2154-2686
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Melnikov,
author = {Arsenty D Melnikov and Yuri P Tsentalovich and Vadim V Yanshole},
title = {Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data},
journal = {Analytical Chemistry},
year = {2019},
volume = {92},
publisher = {American Chemical Society (ACS)},
month = {dec},
url = {https://pubs.acs.org/doi/10.1021/acs.analchem.9b04811},
number = {1},
pages = {588--592},
doi = {10.1021/acs.analchem.9b04811}
}
MLA
Цитировать
Melnikov, Arsenty D., et al. “Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data.” Analytical Chemistry, vol. 92, no. 1, Dec. 2019, pp. 588-592. https://pubs.acs.org/doi/10.1021/acs.analchem.9b04811.