volume 22 issue 11 pages 6608-6615

Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms

Publication typeJournal Article
Publication date2022-10-24
scimago Q2
wos Q1
SJR0.633
CiteScore5.6
Impact factor3.4
ISSN15287483, 15287505
General Chemistry
Condensed Matter Physics
General Materials Science
Found 
Found 

Top-30

Journals

1
2
3
4
5
Crystal Growth and Design
5 publications, 20%
Journal of Molecular Liquids
2 publications, 8%
Journal of the Taiwan Institute of Chemical Engineers
2 publications, 8%
Molecules
1 publication, 4%
Pharmaceutics
1 publication, 4%
Drug Discovery Today
1 publication, 4%
European Journal of Pharmaceutics and Biopharmaceutics
1 publication, 4%
Chemistry of Materials
1 publication, 4%
CrystEngComm
1 publication, 4%
Journal of the American Chemical Society
1 publication, 4%
International Journal of Molecular Sciences
1 publication, 4%
Journal of Chemical Information and Modeling
1 publication, 4%
Angewandte Chemie
1 publication, 4%
Angewandte Chemie - International Edition
1 publication, 4%
Crystal Research and Technology
1 publication, 4%
International Journal of Pharmaceutics
1 publication, 4%
Chinese Chemical Letters
1 publication, 4%
Chemical Engineering Journal
1 publication, 4%
Crystallography Reviews
1 publication, 4%
1
2
3
4
5

Publishers

1
2
3
4
5
6
7
8
Elsevier
8 publications, 32%
American Chemical Society (ACS)
8 publications, 32%
MDPI
3 publications, 12%
Wiley
3 publications, 12%
Royal Society of Chemistry (RSC)
1 publication, 4%
Taylor & Francis
1 publication, 4%
Taiwan Institute of Chemical Engineers
1 publication, 4%
1
2
3
4
5
6
7
8
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
25
Share
Cite this
GOST |
Cite this
GOST Copy
Hao Y., Hung Y., Shimoyama Y. Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms // Crystal Growth and Design. 2022. Vol. 22. No. 11. pp. 6608-6615.
GOST all authors (up to 50) Copy
Hao Y., Hung Y., Shimoyama Y. Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms // Crystal Growth and Design. 2022. Vol. 22. No. 11. pp. 6608-6615.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.cgd.2c00812
UR - https://doi.org/10.1021/acs.cgd.2c00812
TI - Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms
T2 - Crystal Growth and Design
AU - Hao, Yingquan
AU - Hung, Ying-Chieh
AU - Shimoyama, Yusuke
PY - 2022
DA - 2022/10/24
PB - American Chemical Society (ACS)
SP - 6608-6615
IS - 11
VL - 22
SN - 1528-7483
SN - 1528-7505
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Hao,
author = {Yingquan Hao and Ying-Chieh Hung and Yusuke Shimoyama},
title = {Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms},
journal = {Crystal Growth and Design},
year = {2022},
volume = {22},
publisher = {American Chemical Society (ACS)},
month = {oct},
url = {https://doi.org/10.1021/acs.cgd.2c00812},
number = {11},
pages = {6608--6615},
doi = {10.1021/acs.cgd.2c00812}
}
MLA
Cite this
MLA Copy
Hao, Yingquan, et al. “Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms.” Crystal Growth and Design, vol. 22, no. 11, Oct. 2022, pp. 6608-6615. https://doi.org/10.1021/acs.cgd.2c00812.