ACS Medicinal Chemistry Letters, volume 10, issue 4, pages 539-544
Cannabinoids from Cannabis sativa L.: A New Tool Based on HPLC–DAD–MS/MS for a Rational Use in Medicinal Chemistry
Michele Protti
1
,
Virginia Brighenti
2
,
Maria Rita Battaglia
1
,
Lisa Anceschi
2
,
Federica Pellati
2
,
Laura Mercolini
1
Publication type: Journal Article
Publication date: 2019-01-29
Journal:
ACS Medicinal Chemistry Letters
scimago Q1
SJR: 0.883
CiteScore: 7.3
Impact factor: 3.5
ISSN: 19485875
PubMed ID:
30996793
Organic Chemistry
Drug Discovery
Biochemistry
Abstract
Cannabis sativa L. represents one of the most widely used source of drugs and drugs of abuse worldwide. Its biologically active compounds are mainly cannabinoids, including Δ9-tetrahydrocannabinol (THC), which is responsible for the psychoactive effects, tetrahydrocannabinolic acid (THCA), cannabinol (CBN), cannabidiol (CBD), and cannabidiolic acid (CBDA). Together with recreational and drug-type (or medicinal) Cannabis, some new products have been recently released into the market as fiber-type Cannabis variants (also known as hemp or industrial hemp) with low THC content and high content of nonpsychoactive CBD. In this research work, the aim was to characterize Cannabis recreational and drug-type samples by quantifying their active principles, after the development and validation of a suitable analytical method. In addition to the Cannabis samples described above, fiber-type plant varieties were also analyzed to monitor their content of nonpsychoactive compounds for both pharmaceutical and nutraceutical purposes. To do this, a highly efficient HPLC-DAD-MS/MS method, with an electrospray ionization (ESI) source and a triple-quadrupole mass analyzer acquiring in the multiple reaction monitoring (MRM) mode also coupled to a diode array detector (DAD), was developed and applied. Satisfactory validation results were obtained in terms of precision (RSD < 6.0% for all the analytes) and accuracy (>92.1% for all the compounds). The proposed methodology represents a versatile and reliable tool to assess both psychoactive and nonpsychoactive cannabinoid levels in Cannabis samples for a more rational use in both medicinal chemistry and nutraceutics.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.