Journal of the American Chemical Society, издание 142, том 6, страницы 2803-2811

High-Pressure Synthesis of Magnetic Neodymium Polyhydrides

Zhou Di 1
Xie Hui 1
Huang Xiaoli 1
Duan Defang 1
Aperis Alex 3
Kartsev Alexey 4, 5
Oganov Artem R 2, 6
Cui Tian 1, 7
1
 
State key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
3
 
Department of Physics and Astronomy, Uppsala University, P.O. Box 516, Uppsala SE-75120, Sweden
5
 
School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, United Kingdom
6
 
International Center for Materials Discovery, Northwestern Polytechnical University, Xi’an 710072, China
7
 
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Тип публикацииJournal Article
Дата публикации2020-01-22
American Chemical Society (ACS)
American Chemical Society (ACS)
ЖурналJournal of the American Chemical Society
Квартиль SCImagoQ1
Квартиль WOSQ1
Impact factor15
ISSN00027863, 15205126
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Краткое описание
The current search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest-TC superconductor fcc-LaH10, here we discover several superhydrides of another lanthanide - neodymium. We identify three novel metallic Nd-H phases at pressures range from 85 to 135 GPa: I4/mmm-NdH4, C2/с-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3 ̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/с-NdH7 are stable from 135 down to 85 GPa, and P63/mmc-NdH9 from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ~ 4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electron band structure (> 450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation as about 200 K (NdH4), 180 K (NdH7) and 400 K (NdH9).

Цитирования по журналам

2
4
6
8
10
Physical Review B
Physical Review B, 10, 19.61%
Physical Review B
10 публикаций, 19.61%
Advanced Materials
Advanced Materials, 3, 5.88%
Advanced Materials
3 публикации, 5.88%
Physical Review Letters
Physical Review Letters, 3, 5.88%
Physical Review Letters
3 публикации, 5.88%
Scientific Reports
Scientific Reports, 3, 5.88%
Scientific Reports
3 публикации, 5.88%
Journal of Physics Condensed Matter
Journal of Physics Condensed Matter, 3, 5.88%
Journal of Physics Condensed Matter
3 публикации, 5.88%
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics, 3, 5.88%
Physical Chemistry Chemical Physics
3 публикации, 5.88%
Journal of Applied Physics
Journal of Applied Physics, 2, 3.92%
Journal of Applied Physics
2 публикации, 3.92%
Nature Communications
Nature Communications, 2, 3.92%
Nature Communications
2 публикации, 3.92%
Inorganic Chemistry
Inorganic Chemistry, 2, 3.92%
Inorganic Chemistry
2 публикации, 3.92%
Chemical Science
Chemical Science, 2, 3.92%
Chemical Science
2 публикации, 3.92%
Journal of Physical Chemistry Letters
Journal of Physical Chemistry Letters, 1, 1.96%
Journal of Physical Chemistry Letters
1 публикация, 1.96%
Materials Today
Materials Today, 1, 1.96%
Materials Today
1 публикация, 1.96%
Physical Review Research
Physical Review Research, 1, 1.96%
Physical Review Research
1 публикация, 1.96%
Nature
Nature, 1, 1.96%
Nature
1 публикация, 1.96%
Frontiers in Electronic Materials
Frontiers in Electronic Materials, 1, 1.96%
Frontiers in Electronic Materials
1 публикация, 1.96%
Materials Today Physics
Materials Today Physics, 1, 1.96%
Materials Today Physics
1 публикация, 1.96%
Fundamental Research
Fundamental Research, 1, 1.96%
Fundamental Research
1 публикация, 1.96%
Chem
Chem, 1, 1.96%
Chem
1 публикация, 1.96%
Chinese Physics Letters
Chinese Physics Letters, 1, 1.96%
Chinese Physics Letters
1 публикация, 1.96%
ACS Omega
ACS Omega, 1, 1.96%
ACS Omega
1 публикация, 1.96%
Chemistry - A European Journal
Chemistry - A European Journal, 1, 1.96%
Chemistry - A European Journal
1 публикация, 1.96%
Science China: Physics, Mechanics and Astronomy, 1, 1.96%
Science China: Physics, Mechanics and Astronomy
1 публикация, 1.96%
ACS Materials Letters
ACS Materials Letters, 1, 1.96%
ACS Materials Letters
1 публикация, 1.96%
Nanoscale
Nanoscale, 1, 1.96%
Nanoscale
1 публикация, 1.96%
Dalton Transactions
Dalton Transactions, 1, 1.96%
Dalton Transactions
1 публикация, 1.96%
Acta Physica Sinica
Acta Physica Sinica, 1, 1.96%
Acta Physica Sinica
1 публикация, 1.96%
2
4
6
8
10

Цитирования по издателям

2
4
6
8
10
12
14
American Physical Society (APS)
American Physical Society (APS), 14, 27.45%
American Physical Society (APS)
14 публикаций, 27.45%
Royal Society of Chemistry (RSC)
Royal Society of Chemistry (RSC), 7, 13.73%
Royal Society of Chemistry (RSC)
7 публикаций, 13.73%
Springer Nature
Springer Nature, 6, 11.76%
Springer Nature
6 публикаций, 11.76%
American Chemical Society (ACS)
American Chemical Society (ACS), 5, 9.8%
American Chemical Society (ACS)
5 публикаций, 9.8%
Wiley
Wiley, 4, 7.84%
Wiley
4 публикации, 7.84%
Elsevier
Elsevier, 4, 7.84%
Elsevier
4 публикации, 7.84%
IOP Publishing
IOP Publishing, 4, 7.84%
IOP Publishing
4 публикации, 7.84%
American Institute of Physics (AIP)
American Institute of Physics (AIP), 2, 3.92%
American Institute of Physics (AIP)
2 публикации, 3.92%
Frontiers Media S.A.
Frontiers Media S.A., 1, 1.96%
Frontiers Media S.A.
1 публикация, 1.96%
Science in China Press, 1, 1.96%
Science in China Press
1 публикация, 1.96%
Chinese Physical Society
Chinese Physical Society, 1, 1.96%
Chinese Physical Society
1 публикация, 1.96%
2
4
6
8
10
12
14
  • Мы не учитываем публикации, у которых нет DOI.
  • Мы обновляем статистику только для публикаций, связанных с профилями, лабораториями и организациями.
  • Статистика публикаций обновляется еженедельно.
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
Zhou D. et al. High-Pressure Synthesis of Magnetic Neodymium Polyhydrides // Journal of the American Chemical Society. 2020. Vol. 142. No. 6. pp. 2803-2811.
ГОСТ со всеми авторами (до 50) Скопировать
Zhou D., Semenok D. V., Xie H., Huang X., Duan D., Aperis A., Oppeneer P., Galasso M., Kartsev A., Kvashnin A. G., Oganov A. R., Cui T. High-Pressure Synthesis of Magnetic Neodymium Polyhydrides // Journal of the American Chemical Society. 2020. Vol. 142. No. 6. pp. 2803-2811.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/jacs.9b10439
UR - https://doi.org/10.1021/jacs.9b10439
TI - High-Pressure Synthesis of Magnetic Neodymium Polyhydrides
T2 - Journal of the American Chemical Society
AU - Huang, Xiaoli
AU - Duan, Defang
AU - Kartsev, Alexey
AU - Kvashnin, Alexander G.
AU - Oganov, Artem R
AU - Cui, Tian
AU - Zhou, Di
AU - Semenok, Dmitry V.
AU - Xie, Hui
AU - Aperis, Alex
AU - Oppeneer, Peter
AU - Galasso, Michele
PY - 2020
DA - 2020/01/22 00:00:00
PB - American Chemical Society (ACS)
SP - 2803-2811
IS - 6
VL - 142
SN - 0002-7863
SN - 1520-5126
ER -
BibTex |
Цитировать
@article{2020_Zhou
author = {Xiaoli Huang and Defang Duan and Alexey Kartsev and Alexander G. Kvashnin and Artem R Oganov and Tian Cui and Di Zhou and Dmitry V. Semenok and Hui Xie and Alex Aperis and Peter Oppeneer and Michele Galasso},
title = {High-Pressure Synthesis of Magnetic Neodymium Polyhydrides},
journal = {Journal of the American Chemical Society},
year = {2020},
volume = {142},
publisher = {American Chemical Society (ACS)},
month = {jan},
url = {https://doi.org/10.1021/jacs.9b10439},
number = {6},
pages = {2803--2811},
doi = {10.1021/jacs.9b10439}
}
MLA
Цитировать
Zhou, Di, et al. “High-Pressure Synthesis of Magnetic Neodymium Polyhydrides.” Journal of the American Chemical Society, vol. 142, no. 6, Jan. 2020, pp. 2803-2811. https://doi.org/10.1021/jacs.9b10439.