Open Access
Open access
npj Computational Materials, том 9, издание 1, номер публикации: 7

Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

Тип документаJournal Article
Дата публикации2023-01-13
Springer Nature
Springer Nature
Название журналаnpj Computational Materials
Квартиль по SCImago1
Квартиль по Web of Science
Импакт-фактор 202112.26
ISSN20573960
Computer Science Applications
General Materials Science
Mechanics of Materials
Modeling and Simulation
Краткое описание

Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.

Цитируется в публикациях: 3
Метрики

Поделиться

Цитировать
ГОСТ |
Цитировать
1. Pak A. Ya. и др. Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide // npj Computational Materials. 2023. Т. 9. № 1.
RIS |
Цитировать

TY - JOUR

DO - 10.1038/s41524-022-00955-9

UR - http://dx.doi.org/10.1038/s41524-022-00955-9

TI - Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

T2 - npj Computational Materials

AU - Pak, Alexander Ya.

AU - Sotskov, Vadim

AU - Gumovskaya, Arina A.

AU - Vassilyeva, Yuliya Z.

AU - Bolatova, Zhanar S.

AU - Kvashnina, Yulia A.

AU - Mamontov, Gennady Ya.

AU - Shapeev, Alexander V.

AU - Kvashnin, Alexander G.

PY - 2023

DA - 2023/01/13

PB - Springer Science and Business Media LLC

IS - 1

VL - 9

SN - 2057-3960

ER -

BibTex |
Цитировать

@article{Pak_2023,

doi = {10.1038/s41524-022-00955-9},

url = {https://doi.org/10.1038%2Fs41524-022-00955-9},

year = 2023,

month = {jan},

publisher = {Springer Science and Business Media {LLC}},

volume = {9},

number = {1},

author = {Alexander Ya. Pak and Vadim Sotskov and Arina A. Gumovskaya and Yuliya Z. Vassilyeva and Zhanar S. Bolatova and Yulia A. Kvashnina and Gennady Ya. Mamontov and Alexander V. Shapeev and Alexander G. Kvashnin},

title = {Machine learning-driven synthesis of {TiZrNbHfTaC}5 high-entropy carbide},

journal = {npj Computational Materials}

}

MLA
Цитировать
Pak, Alexander Ya., et al. “Machine Learning-Driven Synthesis of TiZrNbHfTaC5 High-Entropy Carbide.” Npj Computational Materials, vol. 9, no. 1, Jan. 2023. Crossref, https://doi.org/10.1038/s41524-022-00955-9.