Open Access
Open access
npj Computational Materials, издание 9, том 1, номер публикации 7

Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

Тип публикацииJournal Article
Дата публикации2023-01-13
Springer Nature
Springer Nature
Журналnpj Computational Materials
Квартиль SCImagoQ1
Квартиль WOSQ1
Impact factor9.7
ISSN20573960
Computer Science Applications
General Materials Science
Mechanics of Materials
Modeling and Simulation
Краткое описание

Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.

Цитирования по журналам

1
Dalton Transactions
Dalton Transactions, 1, 20%
Dalton Transactions
1 публикация, 20%
Computational Materials Science
Computational Materials Science, 1, 20%
Computational Materials Science
1 публикация, 20%
Coatings
Coatings, 1, 20%
Coatings
1 публикация, 20%
Russian Physics Journal
Russian Physics Journal, 1, 20%
Russian Physics Journal
1 публикация, 20%
New Journal of Chemistry
New Journal of Chemistry, 1, 20%
New Journal of Chemistry
1 публикация, 20%
1

Цитирования по издателям

1
2
Royal Society of Chemistry (RSC)
Royal Society of Chemistry (RSC), 2, 40%
Royal Society of Chemistry (RSC)
2 публикации, 40%
Elsevier
Elsevier, 1, 20%
Elsevier
1 публикация, 20%
Multidisciplinary Digital Publishing Institute (MDPI)
Multidisciplinary Digital Publishing Institute (MDPI), 1, 20%
Multidisciplinary Digital Publishing Institute (MDPI)
1 публикация, 20%
Springer Nature
Springer Nature, 1, 20%
Springer Nature
1 публикация, 20%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Мы обновляем статистику только для публикаций, связанных с профилями, лабораториями и организациями.
  • Статистика публикаций обновляется еженедельно.
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
Pak A. Ya. et al. Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide // npj Computational Materials. 2023. Vol. 9. No. 1. 7
ГОСТ со всеми авторами (до 50) Скопировать
Pak A. Ya., Sotskov V., Gumovskaya A. A., Vassilyeva Y. Z., Bolatova Z. S., Kvashnina Y. A., Mamontov G. Y., Shapeev A. V., Kvashnin A. G. Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide // npj Computational Materials. 2023. Vol. 9. No. 1. 7
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41524-022-00955-9
UR - https://doi.org/10.1038/s41524-022-00955-9
TI - Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide
T2 - npj Computational Materials
AU - Pak, Alexander Ya
AU - Sotskov, Vadim
AU - Gumovskaya, Arina A
AU - Vassilyeva, Yuliya Z
AU - Bolatova, Zhanar S
AU - Kvashnina, Yulia A
AU - Mamontov, Gennady Ya.
AU - Shapeev, Alexander V
AU - Kvashnin, Alexander G.
PY - 2023
DA - 2023/01/13 00:00:00
PB - Springer Nature
IS - 1
VL - 9
SN - 2057-3960
ER -
BibTex |
Цитировать
@article{2023_Pak
author = {Alexander Ya Pak and Vadim Sotskov and Arina A Gumovskaya and Yuliya Z Vassilyeva and Zhanar S Bolatova and Yulia A Kvashnina and Gennady Ya. Mamontov and Alexander V Shapeev and Alexander G. Kvashnin},
title = {Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide},
journal = {npj Computational Materials},
year = {2023},
volume = {9},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038/s41524-022-00955-9},
number = {1},
doi = {10.1038/s41524-022-00955-9}
}
MLA
Цитировать
Pak, Alexander Ya., et al. “Machine Learning-Driven Synthesis of TiZrNbHfTaC5 High-Entropy Carbide.” Npj Computational Materials, vol. 9, no. 1, Jan. 2023. Crossref, https://doi.org/10.1038/s41524-022-00955-9.