Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells
Тип публикации: Journal Article
Дата публикации: 2021-08-25
scimago Q1
wos Q1
БС1
SJR: 10.529
CiteScore: 44.0
Impact factor: 30.8
ISSN: 17545692, 17545706
Environmental Chemistry
Pollution
Nuclear Energy and Engineering
Renewable Energy, Sustainability and the Environment
Краткое описание
Organic semiconductors have become essential parts of thin-film electronic devices, particularly as hole transport layers (HTLs) in perovskite solar cells (PSCs) where they represent one of the major bottlenecks to further enhancements in both device stability and efficiency. Small molecule 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) and polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) are two of the first successful HTLs used in PSCs, and have remained at the forefront of developing high efficiency devices for almost a decade. Since their first application, many investigations into the properties of spiro-OMeTAD and PTAA have contributed to a growing understanding of the mechanisms that enable their success as HTLs. This review summarizes and discusses the key electronic and morphological properties, doping strategies and mechanisms, and degradation pathways of both spiro-OMeTAD and PTAA. A critical comparison between the two materials is provided, highlighting both the similarities which explain their enduring popularity as well as key differences in electrical and morphological properties. From this analysis emerges an improved understanding of the fundamental properties that enable the persistent success of HTL materials, which are found to include not only hole conductivity, band gap, and morphology, but also interactions with dopants, the perovskite, and environmental stressors. The knowledge about these properties, which are critically summarized in this review, is also applicable to the many other types of organic electronic devices now employing spiro-OMeTAD and PTAA. A detailed examination of the properties of materials reveals a clear set of guiding principles for the development of future generation HTLs. Applying these design strategies to produce more advanced HTLs will be essential to further improve the stability, efficiency, and commercialization of PSCs.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
5
10
15
20
25
|
|
|
ACS applied materials & interfaces
23 публикации, 4.03%
|
|
|
Solar RRL
23 публикации, 4.03%
|
|
|
Journal of Materials Chemistry A
18 публикаций, 3.15%
|
|
|
Advanced Functional Materials
16 публикаций, 2.8%
|
|
|
Small
16 публикаций, 2.8%
|
|
|
ACS Applied Energy Materials
15 публикаций, 2.63%
|
|
|
Angewandte Chemie
15 публикаций, 2.63%
|
|
|
Angewandte Chemie - International Edition
15 публикаций, 2.63%
|
|
|
Advanced Materials
15 публикаций, 2.63%
|
|
|
Energy and Environmental Science
14 публикаций, 2.45%
|
|
|
Solar Energy
12 публикаций, 2.1%
|
|
|
Advanced Energy Materials
12 публикаций, 2.1%
|
|
|
Chemical Engineering Journal
11 публикаций, 1.93%
|
|
|
Journal of Materials Chemistry C
10 публикаций, 1.75%
|
|
|
Nature Communications
8 публикаций, 1.4%
|
|
|
ACS Energy Letters
8 публикаций, 1.4%
|
|
|
Nanomaterials
7 публикаций, 1.23%
|
|
|
Energy Technology
7 публикаций, 1.23%
|
|
|
Sustainable Energy and Fuels
6 публикаций, 1.05%
|
|
|
Materials Today Energy
6 публикаций, 1.05%
|
|
|
Organic Electronics
6 публикаций, 1.05%
|
|
|
Journal of the American Chemical Society
6 публикаций, 1.05%
|
|
|
RSC Advances
6 публикаций, 1.05%
|
|
|
Journal of Energy Chemistry
6 публикаций, 1.05%
|
|
|
Journal of Physical Chemistry C
6 публикаций, 1.05%
|
|
|
ACS Applied Electronic Materials
5 публикаций, 0.88%
|
|
|
Solar Energy Materials and Solar Cells
5 публикаций, 0.88%
|
|
|
Advanced Science
5 публикаций, 0.88%
|
|
|
Journal of Physics and Chemistry of Solids
5 публикаций, 0.88%
|
|
|
5
10
15
20
25
|
Издатели
|
20
40
60
80
100
120
140
160
180
|
|
|
Wiley
171 публикация, 29.95%
|
|
|
Elsevier
133 публикации, 23.29%
|
|
|
American Chemical Society (ACS)
80 публикаций, 14.01%
|
|
|
Royal Society of Chemistry (RSC)
78 публикаций, 13.66%
|
|
|
Springer Nature
44 публикации, 7.71%
|
|
|
MDPI
26 публикаций, 4.55%
|
|
|
IOP Publishing
6 публикаций, 1.05%
|
|
|
AIP Publishing
5 публикаций, 0.88%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
4 публикации, 0.7%
|
|
|
American Association for the Advancement of Science (AAAS)
3 публикации, 0.53%
|
|
|
Taylor & Francis
3 публикации, 0.53%
|
|
|
OAE Publishing Inc.
3 публикации, 0.53%
|
|
|
Frontiers Media S.A.
2 публикации, 0.35%
|
|
|
Tsinghua University Press
2 публикации, 0.35%
|
|
|
SAGE
1 публикация, 0.18%
|
|
|
Scrivener Publishing
1 публикация, 0.18%
|
|
|
Georg Thieme Verlag KG
1 публикация, 0.18%
|
|
|
Research Square Platform LLC
1 публикация, 0.18%
|
|
|
Optica Publishing Group
1 публикация, 0.18%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 0.18%
|
|
|
World Scientific
1 публикация, 0.18%
|
|
|
Beilstein-Institut
1 публикация, 0.18%
|
|
|
Science in China Press
1 публикация, 0.18%
|
|
|
Allerton Press
1 публикация, 0.18%
|
|
|
Walter de Gruyter
1 публикация, 0.18%
|
|
|
20
40
60
80
100
120
140
160
180
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
571
Всего цитирований:
571
Цитирований c 2024:
343
(60.07%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Rombach F. M., Haque S. A., Macdonald T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells // Energy and Environmental Science. 2021. Vol. 14. No. 10. pp. 5161-5190.
ГОСТ со всеми авторами (до 50)
Скопировать
Rombach F. M., Haque S. A., Macdonald T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells // Energy and Environmental Science. 2021. Vol. 14. No. 10. pp. 5161-5190.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1039/D1EE02095A
UR - https://xlink.rsc.org/?DOI=D1EE02095A
TI - Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells
T2 - Energy and Environmental Science
AU - Rombach, Florine M
AU - Haque, Saif A.
AU - Macdonald, Thomas J
PY - 2021
DA - 2021/08/25
PB - Royal Society of Chemistry (RSC)
SP - 5161-5190
IS - 10
VL - 14
SN - 1754-5692
SN - 1754-5706
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Rombach,
author = {Florine M Rombach and Saif A. Haque and Thomas J Macdonald},
title = {Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells},
journal = {Energy and Environmental Science},
year = {2021},
volume = {14},
publisher = {Royal Society of Chemistry (RSC)},
month = {aug},
url = {https://xlink.rsc.org/?DOI=D1EE02095A},
number = {10},
pages = {5161--5190},
doi = {10.1039/D1EE02095A}
}
Цитировать
MLA
Скопировать
Rombach, Florine M., et al. “Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells.” Energy and Environmental Science, vol. 14, no. 10, Aug. 2021, pp. 5161-5190. https://xlink.rsc.org/?DOI=D1EE02095A.